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In the present work second-order Stokes theory has been extended to the case of a
generally shaped bottom profile connecting two half-strips of constant (but possibly
different) depths, initiating a method for generalizing the Stokes hierarchy of second-
and higher-order wave theory, without the assumption of spatial periodicity. In
modelling the wave–bottom interaction three partial problems arise: the first order,
the unsteady second order and the steady second order. The three problems are solved
by using appropriate extensions of the consistent coupled-mode theory developed by
the present authors for the linearized problem. Apart from the Stokes small-amplitude
expansibility assumption, no additional asymptotic assumptions have been introduced.
Thus, bottom slope and curvature may be arbitrary, provided that the resulting wave
dynamics is Stokes-compatible. Accordingly, the present theory can be used for the
study of various wave phenomena (propagation, reflection, diffraction) arising from
the interaction of weakly nonlinear waves with a general bottom topography, in
intermediate water depth. An interesting phenomenon, that is also very naturally
resolved, is the net mass flux induced by the depth variation, which is consistently
calculated by means of the steady second-order potential. The present method has
been validated against experimental results and fully nonlinear numerical solutions.
It has been found that it correctly predicts the second-order harmonic generation,
the amplitude nonlinearity, and the amplitude variation due to non-resonant first-
and-second harmonic interaction, up to the point where the energy transfer to the
third and higher harmonics can no longer be neglected. Under the restriction of
weak nonlinearity, the present model can be extended to treat obliquely incident
waves and the resulting second-order refraction patterns, and to study bichromatic
and/or bidirectional wave–wave interactions, with application to the transformation
of second-order random seas in variable bathymetry regions.

1. Introduction
We consider the problem of weakly nonlinear gravity waves normally incident on a

smooth, but possibly steep, two-dimensional shoal; see figure 1. An essential feature
of this problem is that the wave field is not spatially periodic. Extra difficulties are
introduced by the fact that we drop the assumptions of smallness of the bottom slope
and curvature.

An important phenomenon that can be analysed by means of a weakly nonlinear
theory, appropriately adjusted to the variable bathymetry case, is the phenomenon of
harmonic generation due to nonlinear wave–bottom interaction. This phenomenon
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Figure 1. Geometrical configuration and basic notation.

has been observed in waves propagating from deep water to the continental shelf (see
e.g. the description in the introductions of Massel 1983 and Grue 1992), and in the
laboratory, in the case of waves propagating over submerged structures (Bendykowska
& Massel 1984; Grue 1992; Rey, Belzons & Guazzelli 1992; Beji & Battjes 1993;
Losada, Patterson & Losada 1997). It strongly affects the wave spectrum transforma-
tion over variable bathymetry regions (Kojima, Kioka & Yoshida 1990; Ohyama &
Nadaoka 1994), and is important for the prediction of wave properties in the coastal
and surf zone. Another phenomenon that can be resolved by a weakly nonlinear the-
ory is the recurring evolution of water waves, appearing as a result of non-resonant
interactions between the various wave harmonics. This phenomenon was observed
(as a nuisance) many years ago in laboratory experiments, and studied by various
authors, e.g. Fontanet (1961), Hulsbergen (1974), Massel (1983), Bendykowska &
Massel (1988), Goda (1997). In the last paper an historical survey is also presented.

The interaction of free-surface gravity waves with uneven bottom topography
requires, in principle, the solution of a complicated nonlinear boundary value problem.
Although viscous free-surface flow simulations over variable bottom topographies are
nowadays possible, they are extremely demanding computationally. Recent studies
concentrate on the effects of flow separation and vortex generation, such as in the
case of waves propagating over a submerged dike (Huang & Dong 1999). In general,
however, the problem is treated in the framework of potential flow (Tsai & Yue
1996). Even under this assumption, the complete numerical solution to the nonlinear
free-surface problem presents great difficulties. Time-domain numerical methods for
treating the fully nonlinear problem have been developed by Longuet-Higgins &
Cokelet (1976) and Vinje & Brevig (1981), and since then they have been used by many
authors, see e.g. Isaacson (1982), Dommermuth & Yue (1987), Ohyama & Nadaoka
(1991, 1994) and the survey by Tsai & Yue (1996). The main difficulty in this approach
is the excessive computational effort required, especially in connection with coastal
applications where the range of propagation is usually large. In order to improve
efficiency, Wang, Mirie & Tulin (1995) proposed a multi-subdomain approach and
Kennedy & Fenton (1999) introduced the local polynomial approximation, satisfying
the Laplace equation within each subdomain. Still, however, considerable computer
requirements limit the use of the above fully nonlinear models in practical applications.

On the other hand, there is a vast literature on simplified model wave equations,
mainly based on the assumptions of weak free-surface nonlinearity and slowly vary-
ing bathymetry. These model equations have a more conventional form, permitting
the development of relevant theoretical results, and they are more efficient computa-
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tionally, within the range of their applicability. For example, combining appropriate
asymptotic treatment with depth integration, a class of Boussinesq-type models is de-
rived, accounting for the effects of weak nonlinearity and dispersion for shallow water
waves. Improved versions of these models with enhanced dispersion characteristics,
extending the range of applicability to larger depths and/or variable bathymetry,
have been reported by many authors, see e.g. Madsen & Sorensen (1992), Nwogu
(1993), Liu (1995), Kirby (1997), and the references cited therein. In general, how-
ever, these models cannot be relied on as the depth increases, or the bathymetry
is not slowly varying. Another important example is a class of models that can be
considered as weakly nonlinear generalizations of the mild-slope equation, e.g. the
models developed by Beji & Nadaoka (1997), Nadaoka, Beji & Nakagawa (1997),
Tang & Ouellet (1997). These models can describe combined refraction–diffraction of
weakly nonlinear water waves, but still suffer from the assumption of slowly varying
bathymetries.

In the case of not very shallow water, another typical approach is to use Stokes-type
asymptotic expansions of the velocity potential and free-surface elevation, using as
perturbation parameter the wave slope or an equivalent quantity, see e.g. Mei (1989),
Dingemans (1997, § 2.8). This approach has been comprehensively developed for the
case of constant depth. For example, through a series of papers (see e.g. Fenton 1985;
Jonsson & Arneborg 1995 and the references cited therein) a complete theory has
been developed up to the fifth-order for unidirectional waves, while Ohyama, Jeng
& Hsu (1995a) have developed a fourth-order theory for multidirectional waves. In
the present work the Stokes approach is extended to the case of a generally shaped
bottom profile connecting two half-strips of constant but (possibly) different depths,
initiating a method for generalizing the Stokes hierarchy of wave theories to the
variable bathymetry case, i.e. without the assumption of spatial periodicity.

The second-order Stokes theory for waves lacking spatial periodicity (necessitating,
thus, the inclusion of evanescent modes) has been already used for analysing a
number of problems, both in the frequency and in the time domains. For example,
Hudspeth & Sulisz (1991), Moubayed & Williams (1994) and Schaeffer (1996) have
developed second-order wavemaker theories, and there has been much work on
second-order wave–body interactions in the case of a scatterer in a constant-depth
strip; some recent references are Sulitz (1993, 1999), Drimer & Agnon (1994), Newman
(1996), Huang & Eatock Taylor (1996), Li & Williams (1998), Teng & Kato (1999),
Malenica, Eatock Taylor & Huang (1999). For the calculation of second-order forces
and moments on bodies, an indirect method, without necessitating the calculation
of the second-order potential, has been suggested by Lighthill (1979) for infinite
water depth, extended to the case of a vertical cylinder in finite water depth by
Molin (1979), and since then used by many authors. The second-order diffraction
problem has also been treated in the time domain by Isaacson & Cheung (1991,
1992). The characteristic feature of all the above work is that the water depth is
considered constant throughout the liquid domain. A case of non-constant depth
has been considered by Massel (1983) and Bendykowska & Massel (1984), who
have studied both theoretically and experimentally the second-order propagation–
diffraction problem for a monochromatic wave normally incident on an infinite
underwater step. More recently Rhee (1997) considered this problem for an obliquely
incident wave.

Our main concern here is to develop a second-order Stokes theory for the case
of a smooth, generally shaped bathymetry, without imposing any mild-slope-type
assumptions on the bottom boundary. (This means that the bathymetry may change
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considerably within one wavelength distance.) Clearly, the second-order solution has
to be based on a reliable first-order one, conforming to the same specifications.
For this purpose, the consistent coupled-mode theory developed by Athanassoulis
& Belibassakis (1999, referred to herein as AB) is used. This method transforms
the linearized problem to a coupled system of horizontal second-order differential
equations, and can be considered as an improvement of the extended mild-slope
equation developed by Massel (1993) and Porter & Staziker (1995). It applies domain
decomposition to three subdomains: two infinite half-strips of constant (possibly
different) depths, and a bounded, variable bathymetry subdomain between the two
half-strips. Wave potential is represented by means of complete normal-mode series in
the two half-strips, and by an enhanced local-mode series in the intermediate, variable
bathymetry subdomain. The latter series involves the propagating and evanescent
modes and, also, an additional term, called the sloping-bottom mode, which allows
the exact satisfaction of the bottom boundary condition, even on the steep parts of
the bottom. This method has also been extended to three dimensions (Athanassoulis,
Belibassakis & Gerostathis 2000).

To obtain the solution to the second-order problem, an incident wave system should
be defined, and appropriate conditions, controlling the behaviour of the second-
order potentials at infinity, must be introduced. In formulating the monochromatic
second-order diffraction problem, the incident wave field is usually taken to be the
superposition of the first harmonic and the associated Stokes second-order bound
wave, see e.g. Molin (1979) and the references cited above in connection with the
wave–body interaction problem. The same definition of the incident wave has also
been made by Massel (1983) and Rhee (1997) in the case of an infinite underwater step.
In the present work the incident wave system is generalized by including a double-
frequency free harmonic, with an arbitrary second-order amplitude. Such a component
might, in fact, be present if the incident wave system is generated by the wavemaker
in a flume (Hudspeth & Sulisz 1991; Goda 1997), or disturbed by another bottom
inhomogeneity located far up-wave. (In these cases the amplitude of the incident
double-frequency free harmonic can be calculated by taking into account the details
of the up-wave flow). Concerning conditions at infinity, the usual radiation condition
(Massel 1983; Sulisz 1993), stating that the second-order free waves generated by the
bottom inhomogeneity propagate outwards, has been used. It has been implemented
in a straightforward way, by retaining only the outward-propagating free-wave modes
in the series representations used in the solution procedure.

Unlike the case of waves propagating in uniform depth, in the case of an uneven
bottom topography, the average second-order mass flux generated by the first-order
wave is not balanced. This inconsistency is resolved by taking into account the steady
second-order potential, which behaves like a uniform current at infinity. It is shown
here that the total mass flux up to the second order, i.e. that generated by linearized
potential plus that induced by the steady second-order problem, is the same across
any vertical section.

Thanks to the assumption that far from the bottom inhomogeneity the depth is
constant (although it may be different up- and down-wave), the problem can be
treated similarly to the linearized one (see AB), i.e. by applying domain decomposi-
tion and by requiring the complete matching of the second-order wave potential at
the artificial vertical interfaces, separating the infinite half-strips from the bounded,
variable bathymetry region. Complete normal-mode representations of the wave po-
tential up to second-order have been used in the two half-strips, and enhanced
local-mode representations have been used in the variable bathymetry domain. The
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latter representations contain, apart from the standard set of modes (propagating
and evanescent), two additional modes: the free-surface mode, enabling the exact sat-
isfaction of the inhomogeneous free-surface condition, and the sloping-bottom mode,
serving the same purpose as in the linearized problem (AB, § 4). The second-order
problems are finally refomulated, with the aid of appropriate variational principles,
as coupled-mode systems of second-order differential equations in the propagation
(horizontal) space, restricted by the bounded extent of the free surface of the in-
termediate subdomain. Complete sets of boundary conditions for each system of
equations are derived with the aid of the variational formulations. The final systems
are similar to the corresponding one obtained in AB for the linearized problem, with
the appropriate non-homogeneities bringing into play the second-order effects.

Approximate numerical solutions are obtained by truncating the local-mode series
to a finite number of terms, and using finite differences for the discretization of
the horizontal coupled-mode systems. A thorough numerical investigation has been
performed in the case of a smooth underwater shoaling with a very steep bottom,
mainly aimed at the determination of appropriate values for the numerical parameters,
and the establishment of numerical convergence. One finding is that the rate of decay
of the second-order modal-amplitude functions is O(n−4), where n is the mode number,
as in the linearized problem (AB, § 6). This means that a small number of modes is
sufficient to accurately calculate the second-order velocity field throughout the liquid
domain, also including the steep parts of the bottom boundary.

The present method has also been validated against experimental results (Rey et
al. 1992; Ohyama, Kioka & Tada 1995b) and fully nonlinear numerical solutions
(Ohyama & Nadaoka 1994). It has been found that it correctly predicts the second-
order harmonic generation, the amplitude nonlinearity, and the amplitude variation
down-wave due to non-resonant first-and-second harmonic interaction, up to a lim-
iting shoaling configuration, after which a large amount of energy is transferred to
higher harmonics.

The present work is structured as follows. In § 2 the boundary-value problem
is formulated in the time and frequency domains. In § 3 energy and mass fluxes
are studied up to the second order. Complete representations for the second-order
potentials in the constant-depth half-strips are given in § 4. In § 5 the second-order
problems are reformulated as matching boundary-value (transmission) problems, and
equivalent variational principles are given. The enhanced local-mode representations
in the variable bathymetry domain are derived in § 6. The second-order problems are
reformulated as coupled-mode systems of horizontal differential equations in § 7. In
§ 8 numerical results are presented and discussed, and the conclusions are stated in
§ 9. Various technical details are included in three appendices.

2. Formulation of the problem
The geometrical configuration for the wave problem under study is shown in fig-

ure 1. Geometrical notation and terminology are the same as in our previous paper
(AB), to which the reader is referred for detailed definitions. Here we restrict our-
selves to mentioning that the whole domain D is a two-dimensional strip, horizontally
unbounded, ending in the constant-depth half-strips D(1) (left half-strip, region of inci-
dence, of depth h1), and D(3) (right half-strip, region of transmission, of depth h3). The
bounded subdomain D(2), joining the two half-strips D(1) and D(3), contains the whole
varying-depth region. Anticipating the physical formulation (see below), we state that
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the wave propagation–reflection problem in D will be eventually reformulated as a
transmission problem within the finite subdomain D(2).

Still-water depth is denoted by h(x), and is a twice continuously differentiable
function defined on the real axis R, such that

h(x) = h(a) = h1 for all x 6 a, h(x) = h(b) = h3 for all x > b. (2.1)

Thus, D(2) is separated from the two half-strips D(1) and D(3) by means of the vertical
interfaces at x = a and x = b, respectively, shown as vertical dashed lines in figure 1.
Also, h(x) can be considered as the mean water depth at each position x corresponding
to linearized waves. Note, however, that in the case of nonlinear waves the mean water
depth at each position x does not coincide with h(x). This point will be discussed in
more detail below.

2.1. The incident wave system

The wave field is generated by the incidence of a second-order periodic wave system
of fundamental frequency ω, propagating from D(1) to D(3), with direction normal
to the bottom contours. That is, the incident wave system is the complete, second-
order Stokes wave system corresponding to the depth h1, travelling in the positive
x-direction. It consists of the linearized incident wave Φinc(1)(x, z; t), of frequency ω

and height H , and the second-order Stokes component Φinc(2b)(x, z; t) bound to the
linearized wave. In addition to the above components, a second-order free harmonic
Φinc(2f)(x, z; t) is also included in the incident wave system; it is assumed to have an
arbitrary amplitude consistent, however, with the order of approximation. Thus, the
wave potential associated with the incident wave system is as follows:

Φinc(x, z; t) = Φinc(1)(x, z; t) + Φinc(2b)(x, z; t) + Φinc(2f)(x, z; t)

= −gH
2ω

cosh(k(1)
0 (z + h1))

cosh(k(1)
0 h1)

Re(iA0 exp(i(k(1)
0 x− ωt)))

−3H2ω

32

cosh(2k(1)
0 (z + h1))

sinh4(k(1)
0 h1)

Re(iA2
0 exp(2i(k(1)

0 x− ωt)))

−H
2ω

4

cosh(κ(1)
0 (z + h1))

cosh(κ(1)
0 h1)

Re(Λ0 exp(i(κ(1)
0 x− 2ωt))), (2.2a)

where i =
√−1; the quantities k(1)

0 and κ
(1)
0 are appropriate wavenumbers obtained

as the roots of the dispersion relations µh1 = k
(1)
0 h1 tanh(k(1)

0 h1) and 4µh1 = κ
(1)
0 h1

tanh(κ(1)
0 h1), respectively; µ = ω2/g is the frequency parameter and g is the accelera-

tion due to gravity. Furthermore, A0 = exp(iθ0) is an arbitrary constant controlling the
phase of the linearized component Φinc(1)(x, z; t), and Λ0 is an arbitrary constant with
modulus |Λ0| = O(1) controlling the amplitude and the phase of the second-order free
harmonic Φinc(2f)(x, z; t). It can be easily seen that the requirement |Λ0| = O(1), in con-

junction with the multiplicative constant H2ω/4, renders the wave slope associated
with Φinc(2f)(x, z; t) of second-order in comparison with the wave slope of Φinc(1)(x, z; t).

For given wave frequency ω and wave height H , the degrees of freedom of the
incident system (2.2a) are the complex constants A0 and Λ0. The inclusion of the
second-order free harmonic Φinc(2f)(x, z; t) as an extra, independent component, permits
us to formulate and study the complete transmission–diffraction–reflection problem
of second-order Stokes waves in a variable bathymetry region, for the most general
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forcing by a second-order left-incident wave. This case will be called the generalized
monochromatic incidence.

The free-surface elevation associated with the incident wave potential (2.2a) is given
by

ηinc(x; t) = −H
8

1

sinh(2k(1)
0 h1)

+
H

2
Re(A0 exp(i(k(1)

0 x− ωt)))

+
H2k

(1)
0

16

cosh(k(1)
0 h1)(2 + cosh(2k(1)

0 h1))

sinh3(k(1)
0 h1)

Re(A2
0 exp(2i(k(1)

0 x− ωt)))

−H
2ω2

2g
Re(iΛ0 exp(i(κ(1)

0 x− 2ωt))). (2.2b)

The first term in the expansion (2.2b) is a constant negative term, which is referred
to as the mean-water-level set-down, see e.g. Mei (1989, § 12.3), Massel (1989, § 2.3).
It is well known (see e.g. Whitham 1974; Dalzell 1999) that in formulating and
solving the second-order Stokes problem in constant (finite) water depth, the mean
(over a period) wave elevation and the mean wave potential cannot both be zero. In
the present approach we shall impose the solution to attain a non-zero mean water
elevation and a zero mean wave potential, as anticipated by (2.2) for the incident
wave system. With this definition, the energy flux, which will be studied in § 4, should
be considered with respect to a mean energy level that coincides with the mean water
level of the linearized waves; see also Jonsson & Arneborg (1995).

It is worth noting here that with the incident wave system is associated a mean
(over a wave period) mass flux, which, to second order, is given by

MW
av =

ρωH2

8 tanh(k(1)
0 h1)

. (2.2c)

2.2. Stokes series expansion of the wave potential

Under the assumption of inviscid and irrotational flow, the wave potential satisfies
the following equations in the time domain (see e.g. Mei 1989; chap. 1; Debnath
1994):

∆Φ = 0, −∞ < x < ∞, −h(x) < z < η(x; t), (2.3a)

∂2Φ

∂t2
+ g

∂Φ

∂z
+
∂|u|2
∂t

+ 1
2
u · ∇|u|2 = 0, z = η(x; t), (2.3b)

∂Φ

∂t
+ 1

2
|u|2 + gη = 0, z = η(x; t), (2.3c)

∂Φ

∂z
+

dh

dx

∂Φ

∂x
= 0, z = −h(x), (2.3d)

where u = ∇Φ is the wave velocity and η(x; t) is the free-surface elevation. The
problem is restricted in two space dimensions (x, z), since the direction of the incident
wave system has been assumed normal to the parallel bottom contours.

The characteristic time scale involved in the problem is the wave period T , related to
the fundamental frequency ω by T = 2π/ω. The characteristic length scales involved
(directly or indirectly) in the problem are: the two far-field water depths hi, i = 1, 3,
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the corresponding far-field wavelengths λi, i = 1, 3, the amplitude of the fundamental
harmonic H/2, as well as the bottom variation length and an average amplitude
of bottom corrugations. Assuming that the water depth does not become extremely
small in D, we can select as characteristic vertical scale the quantity href = 1

2
(h1 + h3)

and as characteristic horizontal scale the deep-water wavelength λref = gT 2/2π.
From these characteristic scales we can form various non-dimensional characteristic

numbers, the most important of which are: the shallowness ratios hi/λi, i = 1, 3, and
href/λref , the mean and the maximum bottom slopes smean, smax, the shoaling ratio h3/h1,
as well as the nonlinearity parameter

ε = µ
H

2
=
ω2H

2g
=
πH

λref
. (2.4)

Note that, in accordance with the above definition, the nonlinearity parameter ε
remains constant in the whole domain D = D(1) ∪ D(2) ∪ D(3). Since, however, ε co-
incides with the deep-water wave slope amplitude, the validity of the above non-
dimensionalization is, in principle, restricted to the large and intermediate water
depth regime (e.g. h/λ > 0.07).

In the present work all the above non-dimensional numbers, except the nonlinearity
parameter ε, are considered to be of the same order of magnitude, O(1). That is, no
asymptotic assumptions are made for them. On the other hand, the nonlinearity
parameter ε is assumed to be small, permitting a Stokes-type perturbation expansion
to be applied of the form

Φ(x, z, t; ε) = εφ1(x, z; t) + ε2φ2(x, z; t) + · · · , (2.5)

η(x, t; ε) = εη1(x; t) + ε2η2(x; t) + · · · . (2.6)

By introducing the expansions (2.5) and (2.6) in (2.3), and keeping terms up to
the second order O(ε2), we obtain the linearized and the second-order problems for
the pairs (φ1(x, z; t), η1(x; t)) and (φ2(x, z; t), η2(x; t)), respectively; see e.g. Mei (1989),
Debnath (1994). Conditions at infinity will be discussed in § 2.4, for the time-harmonic
case.

2.3. Harmonic time dependence

The harmonic time-dependence of the linearized wave potential is introduced by the
usual factorization:

φ1(x, z; t) = Re(Ξϕ1(x, z; µ)e−iωt), (2.7a)

where Ξ = −ig2/ω3 is a multiplicative constant, permitting us to write the
linearized free-surface elevation (the first term of the Stokes series, (2.6)) in the
standard form

εη1(x, z; t) = Re( 1
2
Hϕ1(x, z = 0; µ)e−iωt). (2.7b)

Using (2.7a) in the free-surface boundary condition of the second-order problem, we
see that the forcing term contains the ω + ω = 2ω and ω − ω = 0 harmonics, as
expected. Therefore, the time dependence of the second-order potential should be of
the form

φ2(x, z; t) = Re(Ξ2ϕ20(x, z)) + Re(Ξ2ϕ22(x, z; µ2)e
−2iωt), (2.8a)

where µ2 = (2ω)2/g = 4µ is the second-order frequency parameter. Thus, the
second-order term in the Stokes series expansion of the free-surface elevation, (2.6),
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becomes

ε2η2(x; t) = ε2(η20(x) + Re(η22(x)e−2iωt))

= (εΞ)2

{
G20

g
+ Re

((
2iω

g
ϕ22(x, z = 0) +

G22

g

)
e−2iωt

)}
, (2.8b)

where the terms G2r , r = 0, 2, are defined exclusively in terms of the linearized potential
on the undisturbed free surface, ϕ1(x, z = 0), as follows:

G20(x) = 1
4
|∇ϕ1(x, z = 0)|2 − 1

2
µ2|ϕ1(x, z = 0)|2, (2.8c)

G22(x) = − 1
4
(∇ϕ1(x, z = 0))2 − 1

2
µ2(ϕ1(x, z = 0))2. (2.8d)

2.4. Conditions at infinity

Conditions at infinity are suggested by the fundamental physics of the problem
under consideration, and they are finely tuned in accordance with the mathematical
structure of the analytic model in a way ensuring physical consistency and unique
solvability. Since the problem under study is primarily a diffraction problem, the
appropriate conditions at infinity are radiation conditions, expressing that far from the
bottom inhomogeneity the diffracted field behaves like outgoing (reflected in D(1), and
transmitted in D(3)) waves. Furthermore, since we follow an asymptotic approach, it
is natural to introduce radiation conditions separately for the first-order (linearized)
and the second-order problems. Following this line of thought, we assume that, far
from the inhomogeneity, in the region of incidence (x → −∞), the wave field up to
the second order will contain the following components:

(Ii) the basic first harmonic associated with the incident wave (ω→, λ1), with given
(first-order) amplitude and phase,

(Iii) the reflected first harmonic (ω←, λ1), with unknown amplitude and phase,

(Iiii) the Stokes second harmonic (2ω→, λ1/2) bound up with the basic first harmonic,

(Iiv) the Stokes second harmonic (2ω←, λ1/2) bound up with the reflected first har-
monic,

(Iv) the incident free second harmonic (2ω→, l1), with given (second-order) amplitude
and phase, and

(Ivi) the generated free second harmonic (2ω←, l1), with unknown amplitude and
phase.

In the region of transmission (x→∞) the wave field up to the second order is
assumed to contain the following components:

(Ti) the transmitted first harmonic (ω→, λ3), with unknown amplitude and phase,

(Tii) the Stokes second harmonic (2ω→, λ3/2) bound up with the transmitted first
harmonic, and

(Tiii) the generated free second harmonic (2ω→, l3), with unknown amplitude and
phase.

In the above statements λj = 2π/k(j)
0 are the first-order wavelengths in the regions

D(j), j = 1, 3, obtained by the dispersion relations ω2 = k
(i)
0 g tanh(k(i)

0 hi); li, i = 1, 3,
are the wavelengths of the free second-harmonic components determined also by the
same dispersion relations at the double frequency 2ω. The arrow under the frequency
symbol indicates the direction of propagation of the corresponding component.

The above first list of six wave components contains both known forcing terms
(to be referred to as ‘forcing from infinity’) and unknown reflected wave components.
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−∞ < x < +∞ The linearized (ω) The unsteady (2ω) The steady second-order
problem second-order problem problem

h < z < 0 ∆ϕ1 = 0 ∆ϕ22 = 0 ∆ϕ20 = 0

z = 0
∂ϕ1

∂z
− µϕ1 = 0

∂ϕ22

∂z
− µ2ϕ22 = F22

∂ϕ20

∂z
= F̃20

z = −h(x)
∂ϕ1

∂z
+

dh

dx

∂ϕ1

∂x
= 0

∂ϕ22

∂z
+

dh

dx

∂ϕ22

∂x
= 0

∂ϕ20

∂z
+

dh

dx

∂ϕ20

∂x
= 0

Forcing from (Ii) (Iiii), (Iiv), (Iv) and not present
infinity (Tii)

Conditions at (Iii) and (Ti) (Ivi) and (Tiii) (Ivii) and (Tiv)
infinity (radiation condition) (radiation condition)

Table 1. Linearized and second-order problems in the frequency domain.

(Ii) is the usual first-order forcing from infinity; (Iiii), (Iiv) and (Iv) are forcing from
infinity for the second-order problem; (Iii) and (Ivi) are the first- and second-order
reflected wave components, whose amplitude and phase will be determined through
the solution procedure. In the second list, the components (Ti) and (Tiii) are first-
and second-order transmitted waves, which will be determined by the solution, while
(Tii) constitutes a forcing from infinity of the second-order problem.

Conditions (Iii) and (Ti) constitute the (usual) radiation conditions of the linearized
problem. Conditions (Ivi) and (Tiii) constitute the radiation conditions of the 2ω prob-
lem. We mention here that all the components listed above, except (Iv), which is
considered for the first time herein, have been also used by Massel (1983) in the study
of second-order Stokes waves over an abrupt underwater step; see also Massel (1989).

As will be discussed in more detail later in § 4, the (second-order) mass fluxes
through the constant-depth subdomains D(1) (x→ −∞) and D(3) (x→ +∞), as cal-
culated from the linearized potential ϕ1(x, z), are not equal. This mass unbalance
can only be recovered by the steady second-order wave potential ϕ20(x, z). Therefore,
it is reasonable to assume that ϕ20(x, z) behaves like a uniform current at infinity,
with direction and velocity determined by the solution on the basis of the mass flux
continuity. Accordingly, conditions at infinity should be supplemented as follows.
Far from the inhomogeneity, the steady second-order potential behaves like a steady
potential corresponding to a uniform current, namely

(Ivii)
∂ϕ20(x, z)

∂x
→ u−∞20 as x→ −∞,

and

(Tiv)
∂ϕ20(x, z)

∂x
→ u+∞

20 as x→∞,
where the velocities u−∞20 , u+∞

20 are unknown and will be obtained from the solution.
Conditions (Ivii) and (Tiv) constitute the conditions at infinity of the steady problem.

2.5. Frequency-domain formulation of the linearized and second-order problems

Substitution of (2.7) and (2.8) into the linearized and second-order problems results
in the reformulation of the problems in the frequency domain, i.e. with respect to the
potentials ϕ1(x, z) and ϕ2r(x, z), r = 2, 0. The complete formulation of the first- and
second-order problems in the frequency domain is summarized in table 1.
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The linearized problem can be efficiently solved in the whole domain D, by means
of the consistent coupled-mode theory developed in AB. Having determined the first-
order solution, we proceed to calculate the forcing terms in the second-order problem.
These forcing terms include the forcing from infinity in the 2ω problem (components
Iiii, Iiv, Iv and Tii), and the free-surface forcing terms (F22(x), F̃20(x)), given by the
formulae

F22(x) =
iω

g

{
(∇ϕ1(x, 0))2 − ϕ1(x, 0)

2g

(
−ω2 ∂ϕ1(x, 0)

∂z
+ g

∂2ϕ1(x, 0)

∂z2

)}
,

−∞ < x < ∞, (2.9)

and

F̃20(x) = − iω

2g2
ϕ̄1(x, 0)

(
−ω2 ∂ϕ1(x, 0)

∂z
+ g

∂2ϕ1(x, 0)

∂z2

)
, −∞ < x < ∞, (2.10)

where an overbar (here and in what follows) denotes the complex conjugate.
Since, however, Ξ2 is real and, by (2.8a), we are interested only in the real part of

the solution to the steady problem, we can simplify it by considering only the real
part of its free-surface forcing:

F20(x) = Re{F̃20(x)} = −Re

{
iω

2g
ϕ̄1(x, 0)

∂2ϕ1(x, 0)

∂z2

}
, −∞ < x < ∞. (2.11)

To derive the right-hand side of the above equation, use was made of the fact that, on
the free surface, Re(iϕ̄1∂ϕ1/∂z) = Re(iµ|ϕ1|2) = 0. The solution to the steady problem
is indeterminate up to a constant. We shall discuss the fixing of this constant in the
next section, where we shall present the general representations of the second-order
potentials ϕ2r(x, z), r = 2, 0, in the two constant-depth half-strips.

3. Energy flux and mass flux in the variable bathymetry region
The instantaneous energy flux past a vertical section at x = const. is, by its defi-

nition, a second-order quantity. The leading term of its expansion is completely
defined in terms of the linearized potential, as follows:

E(x, t) = ρ

∫ z=η(x; t)

z=−h(x)

∂Φ

∂t

∂Φ

∂x
dz = ρε2

∫ z=0

z=−h(x)

∂φ1

∂t

∂φ1

∂x
dz + higher order terms, (3.1)

see e.g. Stoker (1957, § 1.6), Wehausen & Laitone (1960, § 8). The time-average energy
flux is also a second-order quantity, given by

Eav(x) =
ρgH2

8ω

∫ z=0

z=−h(x)

Im

{
ϕ̄1(x, z)

∂ϕ1(x, z)

∂x

}
dz + O(εΞ)4. (3.2)

Energy conservation leads, in the case of a left-incident wave, to the equation
(Wehausen & Laitone 1960, § 17)

c(1)
g (1− |AR|2) = c(3)

g |AT |2, (3.3a)

where AR is the reflection and AT the transmission coefficient, and

c(j)
g =

ω

2k(j)
0

(
1 +

2k(j)
0 hj

sinh(2k(j)
0 hj)

)
, j = 1, 3, (3.3b)
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are the group velocities in the left (D(1)) and right (D(3)) half-strips. Similar relations
also hold in the case of a right-incident wave, or a combined incidence, see e.g. Massel
(1989), Porter & Chamberlain (1997). The next term in average energy flux Eav is of
fourth order, O(εΞ)4. Note that working up to the second order does not permit us
to calculate the next term in the energy expansion (3.2), since the (3, 1) interaction
terms are not available.

Let us now consider the mass flux through a vertical section in the variable
bathymetry region,

M(x) = ρ

∫ z=η(x; t)

z=−h(x)

∂Φ(x, z; t)

∂x
dz. (3.4)

Using (2.5), (2.7), and (2.8) we easily obtain that the average mass flux through a
vertical section in the variable bathymetry region is also a second-order quantity, with
a leading term of the form

Mav(x) = MW
av (x) +MC

av(x) =
ρgH2

8ω
Im

{
ϕ̄1

∂ϕ1

∂x

}
z=0

− ρg2H2

4ω2

∫ z=0

z=−h(x)

∂ϕ20(x, z)

∂x
dz.

(3.5)

In (3.5)MW
av denotes the second-order mass flux component generated by the linearized

wave potential, which corresponds to the mass transport due to the ‘Stokes drift
velocity’, see e.g. Debnath (1994, § 2.9), Massel (1989, chap. 2.3). The other component,
MC

av , in the right-hand side of (3.5), is the second-order mass flux generated by the
steady second-order potential ϕ20, which corresponds to a uniform current at infinity.
MW

av and MC
av will be called in what follows the wave-generated mass flux, and the

current-generated mass flux, respectively. Differentiating the term MW
av (x) with respect

to x we obtain

dMW
av (x)

dx
=
ρgH2

8ω
Im

{
ϕ̄1

∂2ϕ1

∂x2

}
z=0

= −ρgH
2

8ω
Im

{
ϕ̄1

∂2ϕ1

∂z2

}
z=0

= ρ(εΞ)2F20(x), (3.6)

where, for the derivation of the last equation, use was made of (2.11). By integrating
(3.6) between two arbitrary points x1 and x2 > x1, we obtain the following result
concerning the wave-generated mass flux:

MW
av (x2)−MW

av (x1) = ρ(εΞ)2

∫ x=x2

x=x1

F20(x)dx. (3.7)

From (3.5) and (3.7) we can see that in the case of a constant-depth strip, where
F20 = 0, the wave-generated mass flux is constant; see also (2.2c).

In the case of the variable bathymetry strip D, the wave-generated mass flux MW
av (x)

is non-constant along the horizontal axis, according to (3.7). To illustrate better this
effect, let us consider the case of an abrupt underwater step, with different depths hj ,
j = 1, 3, at infinity, see e.g. Massel (1989, chap. 3.5). In this case, the imbalance of the
wave-generated mass flux at infinity is

MW
av (+∞)−MW

av (−∞) =
ρgH2

8ω

(
Im

{
ϕ̄1

∂ϕ1

∂x

}
x=∞
− Im

{
ϕ̄1

∂ϕ1

∂x

}
x=−∞

)
z=0

, (3.8a)
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Figure 2. Reflection (AR), transmission (AT ), and wave-generated mass imbalance (δMW
av ) coefficients

vs. frequency ω, for a left-incident wave past an underwater step. Left-depth h1 = 6 m, right-depth
h3 = 2 m. (Note that, for clarity, the curve 4δMW

av has been plotted in the figure.)

which leads to the following wave-generated mass imbalance coefficient:

δMW
av =

MW
av (+∞)−MW

av (−∞)

ρωH2
=

g

8ω2
(k(3)

0 |AT |2 − k(1)
0 (1− |AR|2)). (3.8b)

Comparing (3.8b) and (3.3) we see that δMW
av is generally non-zero. Numerical results

exhibiting the above effect are presented in figure 2 for an underwater step with
depths h1 = 6 m and h3 = 2 m, and for the range of frequencies from ω = 0.5 rad s−1

(globally shallow-water conditions for this environment) to ω = 4 rad s−1 (globally
deep-water conditions). From this figure, we can clearly observe that the wave-
generated mass imbalance can have positive or negative values, and its magnitude
becomes higher at the lower frequencies. The same effect is also expected in the case
of a smooth bottom profile joining two regions of constant but different depth at
infinity.

We conclude this section by stating and proving the following theorem concerning
the second-order mass flux balance in a variable bathymetry region:

Theorem A. Mass flux balance: The mass flux generated by the steady second-order
potential ϕ20(x, z) in a variable bathymetry region, exactly balances the differences in
the mass flux generated by the linearized wave potential ϕ1(x, z), so that the total mass
flux Mav(x), (3.5), past any vertical section in the strip D remains constant (up to the
second order).
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Proof. By using (3.5), in conjunction with Green’s theorem applied to ϕ20(x, z) we
obtain

MC
av(x2)−MC

av(x1) = −ρg
2H2

4ω2

{∫ z=0

z=−h(x2)

∂ϕ20(x2, z)

∂x
dz −

∫ z=0

z=−h(x1)

∂ϕ20(x1, z)

∂x
dz

}

=
ρg2H2

4ω2

∫ x=x2

x=x1

∂ϕ20(x, z = 0)

∂z
dx =

ρg2H2

4ω2

∫ x=x2

x=x1

F20(x)dx

= −ρ(εΞ)2

∫ x=x2

x=x1

F20(x)dx

= −(MW
av (x2)−MW

av (x1)), (3.9)

and thusMW
av (x1)+M

C
av(x1) = MW

av (x2)+M
C
av(x2), i.e. the average mass flux is completely

balanced.
The above discussion clearly demonstrates the importance of including the steady

second-order potential (induced current) in the solution of the second-order problem
over variable bathymetry regions.

4. Decomposition of the second-order potentials and representations
in the two half-strips D(j), j = 1, 3

The linearized problem has been formulated and solved, in AB, as a transmission
problem in the bounded subdomain D(2), with the aid of normal-mode expansions in
the two half-strips D(j), j = 1, 3, and a local-mode representation of the wave potential
in the variable bathymetry subdomain D(2). In the present paper full use of all tools
and results of AB will be made, with the goal of extending this theory to cover
the second-order case. We, nevertheless, repeat herewith the following four formulae,
in order to fix the notation and facilitate the introduction of the second-order
counterparts. The general representations of the linearized wave potential ϕ1(x, z) in
the two semi-infinite (constant-depth) strips D(1) and D(3) are

ϕ
(1)
1 (x, z) = (A0 exp(ik(1)

0 x) + AR exp(−ik(1)
0 x))Z (1)

0 (z)

+

∞∑
n=1

C (1)
n Z

(1)
n (z) exp(k(1)

n (x− a)), (x, z) ∈ D(1), (4.1a)

ϕ
(3)
1 (x, z) = AT exp(ik(3)

0 x)Z (3)
0 (z) +

∞∑
n=1

C (3)
n Z

(3)
n (z) exp(k(3)

n (b− x)), (x, z) ∈ D(3).

(4.1b)

In the above expansions the terms (A0 exp(ik(1)
0 x) + AR exp(−ik(1)

0 x))Z (1)
0 (z) and

AT exp(ik(3)
0 x)Z (3)

0 (z) define the propagating modes. The remaining terms (n = 1, 2, . . .)

are the evanescent modes. The sets of numbers {ik(j)
0 , k

(j)
n , n = 1, 2, . . .}, j = 1, 3, and

the sets of functions {Z (j)
n (z), n = 0, 1, 2, . . .}, j = 1, 3, are the eigenvalues and the

corresponding eigenfunctions of the regular Sturm–Liouville problems obtained by
separation of variables in the half-strips D(j), j = 1, 3. The eigenvalues {ik(j)

0 , k
(j)
n } are

obtained as the roots of the dispersion relations

µhj = −k(j)hi tan(k(j)hj), j = 1, 3, (4.2)
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Figure 3. General scheme of the decomposition of the second-order potentials in the three
subdomains. The vertical dashed lines indicate matching boundaries.

and the eigenfunctions {Z (j)
n (z), n = 0, 1, 2, . . .} are given by

Z
(j)
0 (z) =

cosh(k(j)
0 (z + hj))

cosh(k(j)
0 hj)

, Z (j)
n (z) =

cos(k(j)
n (z + hj))

cos(k(i)
n hj)

, n = 1, 2, . . . , j = 1, 3.

(4.3)

The correctness (completeness) of the above expansions follows by the standard
theory of regular eigenvalue problems, see e.g. Coddington & Levinson (1955, § 7.4).

Following a similar approach as for the linearized problem, the second-order prob-
lems will be treated by introducing domain decomposition, and reformulating them
as matching boundary value problems in the finite (variable bathymetry) subdomain
D(2). This is accomplished by means of semi-discrete, normal-mode representations of
the second-order potentials ϕ(j)

2r (x, z), r = 2, 0, in the two half-strips D(j), j = 1, 3, and

appropriate local-mode representations of ϕ(2)
2r (x, z), r = 2, 0, in D(2).

The general scheme of the decomposition of the second-order potentials in the
three subdomains, and of our approach to the solution of the second-order problem,
is illustrated in figure 3. As we can see in this figure, the second-order potentials in
the two half-strips are decomposed into bound and free potentials, as follows:

ϕ
(j)
2r (x, z) = S

(j)
2r (x, z) + f

(j)
2r (x, z), r = 2, 0, j = 1, 3, (4.4)

where S (j)
2r (x, z) are known functions representing particular solutions which satisfy

the non-homogeneous free-surface conditions, and f
(j)
2r (x, z) represents the general

solution of the homogeneous problems in D(j), j = 1, 3. The particular solutions
S

(j)
2r (x, z) are further seen to contain a non-decaying at infinity (or propagating)

part, which is denoted by p
(j)
2r (x, z), and an evanescent part, which is denoted by

e
(j)
2r (x, z).
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To establish the representation of the second-order potentials ϕ
(2)
2r (x, z) in the

variable bathymetry subdomain D(2), a similar decomposition as in the two half-strips
is applied, also expressed by (4.4) with j = 2. In this case, although S

(2)
2r (x, z) are

constructed to satisfy the (corresponding) non-homogeneous free-surface conditions
in D(2), they are not particular solutions, since they do not satisfy the Laplace
equation and the bottom boundary condition there. The problem is treated by
providing the unknown component f(2)

22 (x, z) with all appropriate conditions, so that

the superposition S
(2)
22 (x, z) + f

(2)
22 (x, z) satisfies all requirements of the second-order

problems, and ensuring the matching at the interfaces, at x = a and x = b. More
details will be provided in § 4.3 below.

4.1. General representations of the wave potential ϕ22(x, z) in the two half-strips

The general representation of the wave potential ϕ22(x, z) in a constant-depth strip
has been presented by several authors, see e.g. Massel (1983), Hudspeth & Sulisz
(1991), Sulisz (1993). For completeness, we shall recapitulate these representations
below, in the two half-strips D(j), j = 1, 3, of constant depths hj , respectively. The only
difference between the formulae given below and the ones presented by the above
authors is the term corresponding to the incident second-harmonic component (Iv)
in the left half-strip, which is included in our formulation as forcing from infinity to
the 2ω problem.

The 2ω wave potential ϕ(1)
22 (x, z) in the left strip D(1) is decomposed as follows:

ϕ
(1)
22 (x, z) = S

(1)
22 (x, z) + f

(1)
22 (x, z) = p

(1)
22 (x, z) + e

(1)
22 (x, z) + f

(1)
22 (x, z). (4.5)

The component S (1)
22 (x, z), which represents a particular solution of the 2ω-problem

satisfying the non-homogeneous free-surface condition, comprises second-order Stokes
waves bound to the linearized solution in D(1), and is further subdivided into the
propagating Stokes waves p(1)

22 and the evanescent ones e(1)
22 , defined by

p
(1)
22 = λ0R + (λ0 exp(2ik(1)

0 x) + λR exp(−2ik(1)
0 x)) cosh[2k(1)

0 (z + h1)], (4.6a)

e
(1)
22 =

∞∑
n=1

λ0n exp[(k(1)
n + ik(1)

0 )x] cos[(k(1)
n + ik(1)

0 )(z + h1)]

+

∞∑
n=1

λRn exp[(k(1)
n − ik(1)

0 )x] cos[(k(1)
n − ik(1)

0 )(z + h1)]

+

∞∑
m=1

∞∑
n=1

λ(1)
mn exp[(k(1)

m + k(1)
n )x] cos[(k(1)

m + k(1)
n )(z + h1)]. (4.6b)

The coefficients λ0R , λ0, λR , λ0n, λRn, and λ(1)
mn, n, m = 1, 2, 3, . . . , appearing in the above

expansions are not dependent on the spatial variables (x, z) and are given in Appen-
dix A. They all are expressed in terms of the solution of the linearized problem and,
thus, they are considered as known quantities.

The component f(1)
22 (x, z), which represents the general solution of the homogeneous

2ω-problem in D(1), comprises free second-order waves in the left half-strip, and also
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includes propagating and evanescent parts, as follows:

f
(1)
22 (x, z) = (Λ0 exp(iκ(1)

0 x) + ΛR exp(−iκ(1)
0 x))z(1)

0 (z) +

∞∑
n=1

Λ(1)
n z

(1)
n (z) exp(κ(1)

n (x− a)),

(x, z) ∈ D(1). (4.7)

In (4.7) the set of numbers {iκ(1)
0 , κ

(1)
n , n = 1, 2, . . .}, and the set of vertical functions

{z(1)
n (z), n = 0, 1, 2, . . .}, are the eigenvalues and the corresponding eigenfunctions of a

regular Sturm–Liouville problem in [−h1, 0] with frequency parameter µ2 = 4µ. Thus,
the eigenvalues {iκ(1)

0 , κ
(1)
n , n = 1, 2, . . .} are obtained as the roots of the dispersion

relation (4.2) for j = 1 and µ = µ2, and the corresponding eigenfunctions {z(1)
n (z), n =

0, 1, 2, . . .} are defined by (4.3) with the k(1)
n being replaced by κ(1)

n . The coefficient Λ0

is known from the incident wave system. The coefficients ΛR , {Λ(1)
n }n=1,2,... constitute

the degrees of freedom of representation (4.5) and will be determined through the
solution of the 2ω problem.

Similarly, the 2ω wave potential in the right half-strip D(3) is decomposed as
follows:

ϕ
(3)
22 (x, z) = S

(3)
22 (x, z) + f

(3)
22 (x, z) = p

(3)
22 (x, z) + e

(3)
22 (x, z) + f

(3)
22 (x, z), (4.8)

where

p
(3)
22 = λT exp(2ik(3)

0 x) cosh[2k(3)
0 (z + h3)], (4.9a)

e
(3)
22 =

∞∑
n=1

λTn exp[(ik(3)
0 − k(3)

n )x] cos[(k(3)
n − ik(3)

0 )(z + h3)]

+

∞∑
m=1

∞∑
n=1

λ(3)
mn exp[−(k(3)

m + k(3)
n )x] cos[(k(3)

m + k(3)
n )(z + h3)], (4.9b)

f
(3)
22 (x, z) = ΛT exp(iκ(3)

0 x)z(3)
0 (z)+

∞∑
n=1

Λ(3)
n z

(3)
n (z) exp(κ(3)

n (b−x)), (x, z) ∈ D(3). (4.10)

The coefficients λT , λTn and λ(3)
mn, n, m = 1, 2, 3, . . . , appearing in (4.9), are known

(through the linearized solution), and are given in Appendix A. As previously,
the eigenvalues {iκ(3)

0 , κ
(3)
n , n = 1, 2, . . .}, appearing in (4.10), are obtained as the

roots of the dispersion relation (4.2) for j = 3 and µ = µ2, and the corre-
sponding eigenfunctions {z(3)

n (z), n = 0, 1, 2, . . .} are given by (4.3) with the k(3)
n being

replaced by κ(3)
n . The coefficients ΛT , {Λ(3)

n }n=1,2,... constitute the degrees of freedom
of the representation (4.8) and will be determined through the solution of the 2ω
problem.

4.2. General representations of the steady wave potential ϕ20(x, z) in the two half-strips

The general representation of the steady wave potential ϕ20(x, z) is obtained in a
similar way as the representation of ϕ22(x, z), see e.g. Hudspeth & Sulisz (1991). The
potential ϕ(1)

20 (x, z), in the left half-strip D(1), can be decomposed into two parts as
follows:

ϕ
(1)
20 (x, z) = S

(1)
20 (x, z) + f

(1)
20 (x, z) = e

(1)
20 (x, z) + f

(1)
20 (x, z). (4.11)

The component S (1)
20 (x, z) = e

(1)
20 (x, z) represents a particular solution of the steady

problem satisfying the non-homogeneous free-surface condition. It comprises only
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evanescent terms (p(1)
20 (x, z) = 0), and is given by

e
(1)
20 (x, z) = Re

{ ∞∑
m=1

γ̃Rn exp[(k(1)
n + ik(1)

0 )x] cos[(k(1)
n + ik(1)

0 )(z + h1)]

+

∞∑
n=1

γRn exp[(k(1)
n − ik(1)

0 )x] cos[(k(1)
n − ik(1)

0 )(z + h1)]

+

∞∑
m=1

∞∑
n=1

(n6=m)

γ(1)
mn exp[(k(1)

m + k(1)
n )x] cos[(k(1)

m + k(1)
n )(z + h1)]

}
. (4.12)

The coefficients γ̃Rn, γRn, γ
(1)
mn, n, m = 1, 2, 3, . . . , appearing in the above expansion, are

determined through the linearized potential in D(1), and are given in Appendix A.

The component f(1)
20 (x, z) in (4.11) represents the general solution to the homogen-

eous steady problem in D(1), and is given by

f
(1)
20 (x, z) = Γ

(1)
0 (x− a)T (1)

0 (z) +

∞∑
n=1

Γ (1)
n T (1)

n (z) exp

(
nπ(x− a)

h1

)
, (x, z) ∈ D(1),

(4.13a)
where the set of vertical functions {T (1)

n (z)}n=0,1,2,... involved in (4.13a) is{
T

(1)
0 (z) = 1, T (1)

n (z) = cos

(
nπz

h1

)
, n = 1, 2, . . .

}
. (4.13b)

The completeness of the representation (4.13a) follows from the basis properties of the
set (4.13b). We note here that the most general form of the first term in (4.13a) is of
the form Γ

(1)
0 (x− Γ (1)

∗ ), where Γ (1)
0 and Γ (1)

∗ are two undetermined constants. However,

only Γ (1)
0 is essential, describing the behaviour at infinity (x→ −∞) of ϕ(1)

20 (x, z); in

fact, Γ (1)
0 = u−∞20 . The second, inessential, constant Γ (1)

∗ has been arbitrarily selected to
be equal to a, the abscissa of the right-hand end of the half-strip D(1).

The steady wave potential in the right half-strip is similarly decomposed:

ϕ
(3)
20 (x, z) = S

(3)
20 (x, z) + f

(3)
20 (x, z) = e

(3)
20 (x, z) + f

(3)
20 (x, z). (4.14)

Now S
(3)
20 (x, z) = e

(3)
20 (x, z) is given by

e
(3)
20 (x, z) = Re

{ ∞∑
n=1

γ̃Tn exp[−(k(3)
n + ik(3)

0 )x] cos[(k(3)
n + ik(3)

0 )(z + h3)]

+

∞∑
n=1

γTn exp[−(k(3)
n − ik(3)

0 )x] cos[(k(3)
n − ik(3)

0 )(z + h3)]

+

∞∑
m=1

∞∑
n=1

(n6=m)

γ(3)
mn exp[−(k(3)

m + k(3)
n )x] cos[(k(3)

m + k(3)
n )(z + h3)]

}
, (4.15)

where the coefficients γ̃Tn, γTn and γ(3)
mn, n, m = 1, 2, 3, . . . , are determined through the

linearized potential in D(3), and are given in Appendix A.
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The component f(3)
20 (x, z) is now given by

f
(3)
20 (x, z) = (Γ (3)

0 + (ξΓ (1)
0 + ν)(x− b))T (3)

0 (z)

+

∞∑
n=1

Γ (3)
n T (3)

n (z) exp

(
nπ(b− x)

h3

)
, (x, z) ∈ D(3), (4.16a)

where the vertical basis

{T (3)
n (z)}n=0,1,2,... =

{
T

(3)
0 (z) = 1, T (3)

n (z) = cos

(
nπz

h3

)
, n = 1, 2, . . .

}
.

The first term of the right-hand side of (4.16a) needs some explanation. In principle,
its general form is ∆(3)

0 (x − ∆(3)
∗ ), similarly to the left half-strip, where ∆(3)

0 and ∆
(3)
∗

are two undetermined constants. Now, however, both constants are essential, ∆(3)
0

describing the behaviour at infinity (x → +∞) of ϕ(3)
20 (x, z) (in fact ∆(3)

0 = u+∞
20 ), and

∆
(3)
0 ∆

(3)
∗ being a blockage constant. There is, however, a relation among ∆(3)

0 , ∆(3)
∗ and

Γ
(1)
0 (the undetermined constant of the left half-strip), obtained by applying Green’s

theorem to ϕ20(x, z) in the whole domain D (in a limiting sense). Using this relation
we can rewrite the term ∆

(3)
0 (x − ∆(3)

∗ ) in the form (Γ (3)
0 + (ξΓ (1)

0 + ν)(x − b))T (3)
0 (z),

where Γ (3)
0 is the new undetermined constant, and ξ, ν are given as

ξ = h1/h3, ν = − 1

h3

∫ x=∞

x=−∞
F20(x)dx. (4.16b)

The convergence of the integral is guaranteed, since the steady forcing F20(x) exhibits
an exponential decay at infinity, as can be easily verified using (2.11) in conjunction
with the representations (4.1) and (4.2).

4.3. Decomposition of the second-order potentials in D(2)

To proceed with the reformulation of the second-order problems as transmission prob-
lems in the variable bathymetry subdomain D(2), it was found convenient to introduce
the following decomposition of the second-order wave potential ϕ(2)

22 (x, z), (x, z) ∈ D(2):

ϕ
(2)
22 (x, z) = S

(2)
22 (x, z) + f

(2)
22 (x, z), a 6 x 6 b, −h2(x) 6 z 6 0, (4.17a)

where S (2)
22 (x, z) is a specific function (given below) satisfying the non-homogeneous

free-surface condition of the 2ω problem in D(2) (although violating both the Laplace
equation and the bottom boundary condition there), and f

(2)
22 (x, z) is an unknown

component which will be provided with all appropriate conditions, so that the super-
position S (2)

22 (x, z) + f
(2)
22 (x, z), satisfies the 2ω problem. In (4.17a) and in what follows,

the symbol h2 = h2(x) will be used to denote the x-dependent depth in the sub-
domain D(2).

One possible choice for S (2)
22 (x, z) is

S
(2)
22 (x, z) = F22(x)z(2)

−2(z; x), with z(2)
−2(z; x) =

cosh[2k(2)
0 (z + h2(x))]

2k(2)
0 sinh(2k(2)

0 h2(x))− µ2 cosh(2k(2)
0 h2(x))

,

(4.17b)

where k(2)
0 = k

(2)
0 (x) denotes the propagating wavenumber obtained as the root of the

local (linearized) dispersion relation in D(2),

ω2 = k
(2)
0 g tanh(k(2)

0 h2(x)), a 6 x 6 b. (4.18)



54 K. A. Belibassakis and G. A. Athanassoulis

A similar decomposition is introduced in the steady second-order potential ϕ(2)
20 (x, z),

in D(2), namely

ϕ
(2)
20 (x, z) = S

(2)
20 (x, z) + f

(2)
20 (x, z), a 6 x 6 b, −h2(x) 6 z 6 0. (4.19a)

Here S (2)
20 (x, z) is defined as

S
(2)
20 (x, z) = F20(x)T (2)

−2 (z; x), with T
(2)
−2 (z; x) = [h2(x)((1 + z/h2(x))3 − (1 + z/h2(x))2)],

(4.19b)
and f(2)

20 (x, z) will be determined so that the superposition S (2)
20 (x, z) + f

(2)
20 (x, z) satisfies

the steady second-order problem.
Further comments regarding the rationale underlying the decompositions (4.17)

and (4.19), and the specific choices for the vertical functions z(2)
−2(z, x) and T

(2)
−2 (z, x)

will be given in § 6, where, also, the meaning of the subscript (−2) will be made clear,
since the second-order wave potentials in D(2) will be expanded in local-mode series
containing terms indexed by the set {−2,−1, 0, 1, 2, . . .}.

5. Reformulation of the second-order problems as transmission
problems in D(2): variational formulation

Having constructed the representation of the second-order potentials in the two
half-strips we are in a position to proceed to the reformulation of the second-order
problems as transmission problems in D(2). For compactness in the presentation

we introduce here the following notation: Let C (1)
0,2 , {C (1)

n,2}n∈N denote the coefficients

ΛR, {Λ(1)
n }n∈N; C (3)

0,2 , {C (3)
n,2}n∈N denote the coefficients ΛT , {Λ(3)

n }n∈N; and C
(j)
0,1, {C (j)

n,1}n∈N
denote the coefficients Γ (j)

0 , {Γ (j)
n }n∈N , j = 1, 3. With the aid of this notation we are

able to unify the discussion for the two second-order potentials ϕ(j)
22 , ϕ(j)

20 , in the two
half-strips D(j), j = 1, 3, avoiding from now on separate presentations.

The half-strip potentials f(j)
2r = f

(j)
2r (x, z), r = 2, 0, are uniquely determined in D(j),

j = 1, 3, in terms of the complex coefficients C (j)
0,r , {C (j)

n,r}n∈N , respectively. Bearing this
in mind we shall occasionally use the notation

f
(j)
2r = f

(j)
2r (x, z;C (j)

0,r , {C (j)
n,r}n∈N) or, simply, f

(j)
2r = f

(j)
2r (C (j)

0,r , {C (j)
n,r}n∈N),

r = 2, 0, j = 1, 3.

By exploiting the decompositions (4.17) and (4.19), in conjunction with the represen-
tations (4.5) and (4.8) and (4.11) and (4.14), in the two half-strips, respectively, the
second-order problems can be formulated as transmission boundary value problems
in the bounded subdomain D(2), as follows:

Problems PT ,2r(D
(2)), r = 2, 0: Given (i) the linearized potential ϕ1(x, z) in D, (ii)

the constant Λ0 = |Λ0| exp(iψ0), where |Λ0| = O(1), and (iii) the representations (4.5)
and (4.8), and (4.11) and (4.14) of the second-order potentials in the semi-infinite
strips D(1) and D(3), find the coefficients C (j)

0,r , {C (j)
n,r}n∈N , r = 2, 0, j = 1, 3, and the

functions f(2)
2r (x, z), r = 2, 0, in D(2), satisfying the following equations, and boundary

and matching conditions:

∇2f
(2)
2r = −∇2S

(2)
2r ≡ gr(x, z), a < x < b, h(x) < z < 0, (5.1a)

∂f
(2)
2r

∂n(2)
− δ2rµ2f

(2)
2r = 0, a < x < b, z = 0, (5.1b)
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∂f
(2)
2r

∂n(2)
= −∂S

(2)
2r

∂n(2)
≡ br(x), a < x < b, z = −h(x), (5.1c)

f
(2)
2r − f(1)

2r (C (1)
0,r , {C (1)

n,r }n∈N) = δ2rp
(1)
2r + e

(1)
2r − S (2)

2r ≡ G(12)
r (z),

x = a, h(x) < z < 0, (5.1d)

∂f
(2)
2r

∂n(2)
+
∂f

(1)
2r (C (1)

0,r , {C (1)
n,r }n∈N)

∂n(1)
= −∂S

(2)
2r

∂n(2)
− ∂(δ2rp

(1)
2r + e

(1)
2r )

∂n(1)
≡ G̃(12)

r (z),

x = a, h(x) < z < 0, (5.1e)

f
(2)
2r − f(3)

2r (C (3)
0,r , {C (3)

n,r }n∈N) = δ2rp
(3)
2r + e

(3)
2r − S (2)

2r ≡ G(23)
r (z),

x = b, h(x) < z < 0, (5.1f )

∂f
(2)
2r

∂n(2)
+
∂f

(3)
2r (C (3)

0,r , {C (3)
n,r }n∈N)

∂n(3)
= −∂S

(2)
2r

∂n(2)
− ∂(δ2rp

(3)
2r + e

(3)
2r )

∂n(3)
≡ G̃(23)

r (z),

x = b, h(x) < z < 0, (5.1g)

where n(j) = (n(j)
x , n

(j)
z ) is the unit normal vector to the boundary ∂D(j) directed to

the exterior of D(j), j = 1, 2, 3, and δpr is Kronecker’s delta. The terms gr(x, z), br(x),

G(12)
r (z), G̃(12)

r (z), G(23)
r (z) and G̃(23)

r (z), appearing on the right-hand side of the above
equations, are known (in terms of the data (i), (ii) and (iii), described at the beginning
of the problems statement) and represent forcing terms of the problems PT ,2r(D

(2)).

The forcing terms gr(x, z) and br(x) ensure that the functions f(2)
2r (x, z), r = 2, 0 (the

solutions to the problems PT ,2r), cancel out the errors produced in the Laplace equa-

tion and in the bottom boundary condition by the prespecified fields S (2)
2r (x, z) (which

served the purpose of making the free-surface boundary condition homogeneous;
see (5.1b). Moreover, the jump conditions, (5.1d, e, f, g), are appropriately defined in
order to ensure continuity of the second-order potentials ϕ2r(x, z), r = 2, 0, across the
vertical interfaces at x = a and x = b.

The two problems (5.1a–g) will be referred to as the second-order transmission
problems PT ,2r(D

(2)), r = 2, 0. These problems admit equivalent variational formu-
lations, similar to the corresponding variational formulation of the linearized problem
presented in AB. The appropriate functionals (for r = 2, 0) are

Fr(f
(2)
2r (x, z), {C (j)

n,r}j=1,3
n=0,1,2,...)

=
1

2

∫
D(2)

(∇f(2)
2r + ∇S (2)

2r )2dV −
∫
∂D

(2)
F

(
δ2rµ2

2
(f(2)

2r + S
(2)
2r )2 + f2rS

(2)
2r

)
dS

+

∫
∂D

(12)
I

{
(f(2)

2r − G(12)
r )

∂(f(1)
2r ({C (1)

n,r }n=0,1,2,...) + δ2rp
(1)
2r + e

(1)
2r )

∂n(1)

− 1

2
f

(1)
2r ({C (1)

n,r }n=0,1,2,...)
∂f

(1)
2r ({C (1)

n,r }n=0,1,2,...)

∂n(1)

}
dS

+

∫
∂D

(23)
I

{
(f(2)

2r − G(23)
r )

∂(f(3)
2r ({C (3)

n,r }n=0,1,2,...) + δ2rp
(3)
2r + e

(3)
2r )

∂n(3)

− 1

2
f

(3)
2r ({C (3)

n,r }n=0,1,2,...)
∂f

(3)
2r ({C (3)

n,r }n=0,1,2,...)

∂n(3)

}
dS

+δ2rΛ0C
(1)
0,r J

(1), (5.2a)
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where J (1) is a constant defined by the equation

J (1) = κ
(1)
0

∫ z=0

z=−h1

(z(1)
0 (z))2dz. (5.2b)

Using these functionals we can state the following.

Theorem B. The variational formulation of the second-order problems PT ,2r: The

functions f(2)
2r (x, z), (x, z) ∈ D(2), and the sets of coefficients C (j)

0,r , {C (j)
n,r}n∈N , j = 1, 3,

satisfy equations (5.1) of the second-order transmission problems (r = 2, 0), if and only
if they render the corresponding functionals Fr stationary, that is

δFr(f
(2)
2r (x, z), {C (1)

n,r }n=0,1,2,..., {C (3)
n,r }n=0,1,2,...) = 0, r = 2, 0. (5.3a)

Sketch of Proof: By calculating the first variaiton δFr of the functionals (5.1), we
obtain the following variational equation:

−
∫
D(2)

(∇2f
(2)
2r − gr)δf(2)

2r dV +

∫
∂D

(2)
Π

(
∂f

(2)
2r

∂n(2)
− br

)
δf

(2)
2r dS

+

∫
∂D

(2)
F

(
∂f

(2)
2r

∂n(2)
− δ2rµ2f

(2)
2r

)
δf

(2)
2r dS

+

∫
∂D

(12)
I

(
∂f

(1)
2r

∂n(1)
+
∂f

(2)
2r

∂n(2)
− G̃(12)

r

)
δf

(2)
2r dS

+

∫
∂D

(23)
I

(
∂f

(2)
2r

∂n(2)
+
∂f

(3)
2r

∂n(3)
− G̃(23)

r

)
δf

(2)
2r dS

+

∫
∂D

(12)
I

(f(2)
2r − f(1)

2r − G(12)
r )δ

(
∂f

(1)
2r

∂n(1)

)
dS

+

∫
∂D

(23)
I

(f(2)
2r − f(3)

2r − G(23)
r )δ

(
∂f

(3)
2r

∂n(3)

)
dS = 0, r = 2, 0, (5.3b)

In (5.3b), the term ∂f
(2)
2r /∂n

(2) on the bottom surface can be expressed in the form

∂f
(2)
2r

∂n(2)
= −

(
∂f

(2)
2r

∂z
+

dh

dx

∂f
(2)
2r

∂x

)
1√

1 + (dh2/dx)2
, r = 2, 0. (5.4)

The variations δ(∂f(1)
2r /∂n

(1)) and δ(∂f(3)
2r /∂n

(3)) should be considered in terms of the
variations δC (j)

n,r , j = 1, 3, as obtained with the aid of expansions (4.5) and (4.11) for
j = 1, and (4.8) and (4.14) for j = 3. The proof of the equivalence of the variational
equations (5.3) and the transmission problems (5.1) is completed by using standard
arguments of the calculus of variations; see AB for a similar proof concerning the
linearized problem in the variable bathymetry region.

The above variational principles will be used in § 7 for the derivation of equivalent
coupled-mode systems of horizontal equations, after introducing consistent local-
mode representations of the second order wave potentials f(2)

2r (x, z), r = 2, 0, in D(2),
in the next section.
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6. Local-mode representations of the second-order potentials in the
variable bathymetry region

A consistent local-mode representation for the linearized wave potential ϕ1(x, z) in
the variable bathymetry subdomain D(2), first introduced in AB, is given by

ϕ
(1)
1 (x, z) = ϕ−1(x)Z (2)

−1(z; x) + ϕ0(x)Z (2)
0 (z; x) +

∞∑
n=1

ϕn(x)Z (2)
n (z; x). (6.1)

In (6.1) the term ϕ
(2)
0 (x)Z (2)

0 (z; x) is the (linearized) propagating mode. The remaining
terms ϕ(2)

n (x)Z (2)
n (z; x), n = 1, 2, . . . are the evanescent modes, and the additional term

ϕ
(2)
−1(x)Z (2)

−1(z; x) is a correction term called the sloping-bottom mode, accounting for the
boundary condition on a sloping bottom. The conditions that Z−1(z; x) should satisfy
are described in AB. Note that Z−1(z; x) is not uniquely defined; however, this freedom
does not affect the final results. For an extensive discussion about this issue the reader
is referred to AB, § 4. The rest of the vertical functions Z (2)

n (z; x), n = 0, 1, 2, . . . , in
(6.1) are obtained as the eigenfunctions of local vertical Sturm–Liouville problems,
and are given by

Z
(2)
0 (z; x) =

cosh[k(2)
0 (x)(z + h2(x))]

cosh(k(2)
0 (x)h2(x))

,

Z (2)
n (z; x) =

cos[k(2)
n (x)(z + h2(x))]

cos(k(2)
n (x)h2(x))

, n = 1, 2, . . . , (6.2a)

where the eigenvalues {ik(2)
0 (x), k(2)

n (x)} are obtained as the roots of the dispersion
relation

µh2(x) = −k(x)h2(x) tan[k(x)h2(x)], a 6 x 6 b. (6.2b)

A specific, convenient form of the function Z (2)
−1(z; x), which is used in this work (§ 8)

to obtain numerical results, is

Z
(2)
−1(z; x) = h2(x)

[(
z

h2(x)

)3

+

(
z

h2(x)

)2
]
. (6.2c)

Representation (6.1) is then used, in conjunction with the variational principle for the
linearized problem, to derive the following coupled-mode system of equations, with
respect to the modal amplitudes ϕn(x), n = −1, 0, 1, 2, . . .:

∞∑
n=−1

amn(x)
d2ϕn(x)

dx2
+ bmn(x)

dϕn
dx

(x) + cmn(x)ϕn(x) = 0,

a < x < b, m = −1, 0, 1, . . . , (6.3)

supplemented by appropriate boundary conditions at the ends x = a and x = b of
the variable bathymetry subdomain D(2); see AB, § 5. These boundary conditions
ensure the complete matching of the linearized wave potential ϕ(2)

1 (x, z) with the

representations (4.1a) for ϕ(1)
1 (x, z) and (4.1b) for ϕ(3)

1 (x, z), in the two half-strips,
respectively. In what follows, this line of thought will be extended to the second-order
problems.
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6.1. Representation of the second-order wave potential in the
variable bathymetry region

Owing to the decomposition (4.17), the second-order wave potential f(2)
22 (x, z) satisfies

the homogeneous free-surface boundary condition, ((5.1b) with r = 2), in D(2). Con-
sequently, the concept of the enhanced local-mode representation (see AB, § 4) can be
applied once again to f(2)

22 (x, z), leading to

f
(2)
22 (x, z) = f−1,2(x)z(2)

−1(z; x) +

∞∑
n=0

fn,2(x)z(2)
n (z; x) =

∞∑
n=−1

fn,2(x)z(2)
n (z; x),

−h2(x) 6 z 6 0, a 6 x 6 b, (6.4)

where fn,2(x), n = −1, 0, 1, . . . , denote the modal amplitudes of the second-order wave

potential f(2)
22 (x, z). The set of functions {z(2)

n (z; x)}, n = 0, 1, 2, . . . , involved in the
above representation is obtained as the solution of local Sturm–Liouville problems,
formulated at the local depth h2(x) in D(2), satisfying the homogeneous free-surface
condition for the second-order frequency parameter µ2:

z
(2)
0 (z; x) =

cosh[κ(2)
0 (z + h2(x))]

cosh(κ(2)
0 (x)h2(x))

, z(2)
n (z; x) =

cos[κ(2)
n (x)(z + h2(x))]

cos(κ(2)
n (x)h2(x))

, n = 1, 2, . . . ,

where the eigenvalues {iκ(2)
0 (x), κ(2)

n (x)} are obtained as the roots of the second-order
dispersion relation formulated at the local depth, ((6.2b), with µ being replaced
by µ2).

Using the representation (6.4) in the decomposition (4.17), the enhanced repre-
sentation of the second-order wave potential ϕ(2)

22 (x, z) in the variable bathymetry
subdomain D(2) is obtained as follows:

ϕ
(2)
22 (x, z) = f−2,2(x)z(2)

−2(z; x) + f
(2)
22 (x, z) =

∞∑
n=−2

fn,2(x)z(2)
n (z; x),

−h2(x) 6 z 6 0, a 6 x 6 b. (6.5)

The above representation, apart from the propagating (n = 0) and the evanescent
(n > 1) modes, involves two additional non-standard terms:

(i) The free-surface mode f−2,2(x)z(2)
−2(z; x), which has already been defined by (4.17b)

to be

f−2,2(x) = F22(x), z
(2)
−2(z; x) =

cosh[2k(2)
0 (x)(z + h2(x))]

2k(2)
0 (x) sinh(2k(2)

0 (x)h2(x))− µ2 cosh(2k(2)
0 (x)h2(x))

.

(6.6)

This extra mode is introduced to ensure the satisfaction of the non-homogeneous
free-surface boundary condition of the 2ω problem; see § 4.3. The vertical structure
(z(2)
−2(z; x)) of this mode is a Stokes waveform, locally bound to the linearized propa-

gating mode ϕ1(x)Z (2)
1 (z; x) in the variable bathymetry subdomain D(2). Other choices

for z(2)
−2(z; x) are also possible, but the one given above seems the most natural and

leads to numerically improved matching at the vertical interfaces x = a and x = b.
(ii) The sloping-bottom mode f−1,2(x)z(2)

−1(z; x), with z(2)
−1(z; x) = Z

(2)
−1(z; x), accounting

for the satisfaction of the bottom boundary condition on a sloping bottom. The
necessity of this term has been thoroughly discussed in AB, where it is shown that the
classical representation consisting only of the propagating and the evanescent modes
(fn,2(x)z(2)

n (z; x), n > 0) is not consistent with the sloping-bottom boundary condition
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and, thus, does not ensure uniform convergence of ϕ(2)
22 (x, z) and its derivatives up to

the bottom boundary z = −h2(x).
Furthermore, by using (6.6) in the representations (6.4) and (6.5), we easily obtain

the following result, connecting the vertical derivative of the second-order wave
potential on the bottom z = −h2(x) with the amplitude of the sloping-bottom mode:

∂ϕ
(2)
22 (x, z = −h2(x))

∂z
=
∂f

(2)
22 (x, z = −h2(x))

∂z
= f−1,2(x). (6.7)

6.2. Representation of the steady second-order potential in the
variable bathymetry region

Working similarly we obtain the following local-mode representation of the steady
second-order potential f(2)

20 (x, z):

f
(2)
20 (x, z) = f−1,0(x)T (2)

−1 (z; x) +

∞∑
n=0

fn,0(x)T (2)
n (z; x) =

∞∑
n=−1

fn,0(x)T (2)
n (z; x),

−h2(x) 6 z 6 0, a 6 x 6 b, (6.8)

where fn,0(x), n = −1, 0, 1, . . . , denote the modal amplitudes of the second-order wave

potential f(2)
20 (x, z), and T (2)

n (z; x) = cos(nπz/h2(x)), n = 0, 1, 2, . . . . The additional term

f−1,0(x)T (2)
−1 (z; x), with T

(2)
−1 (z; x) = Z

(2)
−1(z; x), (6.2c), the sloping-bottom mode, is the

correction term accounting for the exact satisfaction of the boundary condition on a
sloping bottom.

Consequently, by using the decomposition (4.19), the enhanced representation of
the steady second-order potential ϕ(2)

20 (x, z) in the variable bathymetry subdomain D(2)

is obtained as

ϕ
(2)
20 (x, z) = f−2,0(x)T (2)

−2 (z; x) + f
(2)
20 (x, z) =

∞∑
n=−2

fn,0(x)T (2)
n (z; x),

−h2(x) 6 z 6 0, a 6 x 6 b. (6.9)

Again, this representation, apart from the usual (n > 0) local modes, and the
sloping-bottom mode (n = −1), involves the free-surface mode f−2,0(x)T (2)

−2 (z; x), where

T
(2)
−2 (z; x) denotes its vertical structure, and its amplitude has already been defined by

(4.19a) to be

f−2,0(x) = F20(x). (6.10)

This extra mode is introduced to ensure the satisfaction of the non-homogeneous
free-surface boundary condition of the steady second-order problem; see § 4.3. We
remark that, except for the smoothness requirements concerning T (2)

−2 (z; x), its vertical
shape can be arbitrarily selected, subject to the constraints imposed by the following
end-conditions:

∂T
(2)
−2 (z = 0; x)

∂z
= 1,

∂T
(2)
−2 (z = −h2(x); x)

∂z
= 0. (6.11a, b)

Using (6.11a) and the definitions of T (2)
n (z; x), n = −1, 0, 1, 2, . . . , in the representation

(6.9), we obtain that the vertical derivative of the steady second-order potential on
the free surface (z = 0) is

∂ϕ
(2)
20 (x, z = 0)

∂z
= f−2,0(x) = F20(x), (6.12)
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exactly as required by the non-homogeneous, free-surface boundary condition of the
steady second-order problem. Furthermore, using (6.11b) in the representations (6.8)
and (6.9), we obtain the following relation connecting the vertical derivative of the
steady second-order potential on the sloping bottom (z = −h2(x)) with the amplitude
of the (corresponding) sloping-bottom mode:

∂ϕ
(2)
20 (x, z = −h2(x))

∂z
=
∂f

(2)
20 (x, z = −h2(x))

∂z
= f−1,0(x), (6.13)

which is to be determined, so that the bottom boundary condition

f−1,0(x) +
dh2(x)

dx

∂ϕ
(2)
20 (x, z = −h2(x))

∂x
= 0,

is satisfied. One possible choice for T (2)
−2 (z; x), satisfying both smoothness requirements

and conditions (6.11a, b), is the function given by (4.19b), which is simply an upside-
down form of the sloping-bottom mode, i.e. T (2)

−2 (z; x) = −T (2)
−1 (−z − h2; x).

We are now in a position to give the definition of the admissible function spaces
Ar(D

(2)) for the functions f
(2)
2r (x, z), r = 2, 0, to be used in conjunction with the

variational principle of the problems PT ,2r , r = 2, 0, stated in Theorem B. These
function spaces are defined by

Ar(D
(2)) = {ψ(x, z) ∈ C2(D(2)) ∩ C 1(D̄(2)) : ∂ψ/∂z − δ2rµ2ψ = 0 on ∂D(2)

F }, r = 2, 0,

where C k(◦) are the usual spaces of functions having continuous derivatives up to
order k, and D̄(2) = D(2) ∪ ∂D(2). They are more restricted than the ones assumed in
formulating Theorem B, since all of its elements satisfy a priori the homogeneous,
second-order free-surface condition. This more efficient choice for the admissible
functions f(2)

2r (x, z), r = 2, 0, is more accurately restated in the form of the following
theorem.

Theorem C. The representation theorem: Any function ψ(x, z) ∈ Ar(D(2)) can be
uniquely expanded in a series of the form

r = 2: ψ(x, z) =

∞∑
n=−1

ψn(x)z(2)
n (z; x), a 6 x 6 b, −h2(x) 6 z 6 0, (6.14a)

r = 0: ψ(x, z) =

∞∑
n=−1

ψn(x)T (2)
n (z; x), a 6 x 6 b, −h(x) 6 z 6 0, (6.14b)

where z(2)
n (z; x) and T (2)

n (z; x), have been defined previously. The functions ψn(x) are
appropriate amplitude functions belonging to C2((a, b))∩C1([a, b]). The representations
(6.12) are absolutely and uniformly, along with their termwise derivatives, convergent in
the closed domain D̄(2) = {(x, z), a 6 x 6 b, −h(x) 6 z 6 0}.

7. The coupled-mode system of equations for the second-order problems
Let us reconsider the variational principles of the second-order problems,

Theorem B, assuming that f(2)
2r (x, z) ∈ Ar(D

(2)), r = 2, 0. Then, by means of the
enhanced representations (6.4) and (6.8) (see also Theorem C), the functionals
Fr(f

(2)
2r (x, z), {C (1)

n,r }n=0,1,2,..., {C (3)
n,r }n=0,1,2,...), given by (5.2), are transformed to equivalent
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functionals of the form

Fr =Fr

 b
fn,r(x)

a


n=−1,0,1,2,...

, {C (1)
n,r }n=0,1,2,..., {C (3)

n,r }n=0,1,2,...

 , r = 2, 0, (7.1)

where the sub-a and over-b denote the range of the dummy variable x, according
to Volterra’s notation. In this way, the degrees of freedom of the system associated
with the admissible second-order potentials f(2)

2r (x, z), r = 2, 0, in D(2) (interior points)

and f
(2)
2r (x, z) on z = −h2(x) (bottom boundary values) are equivalently described by

the modal amplitudes fn,r(x), x ∈ (a, b), n = −1, 0, 1, . . ., r = 2, 0. Associated with the
vertical interfaces at x = a and at x = b are the degrees of freedom {fn,r(a)}n=0,1,... and
{fn,r(b)}n=0,1,... of the amplitude values at the left-endpoint x = a, and at the right-
endpoint x = b, respectively, as well as the sets of coefficients {C (1)

n,r , n = 0, 1, 2, . . .}
and {C (3)

n,r , n = 0, 1, 2, . . .}, r = 2, 0. The amplitudes of the free-surface modes f−2,r(x),
x ∈ (a, b), r = 2, 0, have been set by (6.6) and (6.10), respectively.

7.1. Horizontal coupled-mode system of equations

Taking into account that any admissible function f
(2)
2r (x, z), r = 2, 0, satisfies the

homogeneous free-surface boundary condition, (5.1b), the third integral on the left-
hand side of (5.3b) can be dropped. Moreover, by assuming that all variations except
δf

(2)
2r (x, z) in D(2) ∪ ∂D(2)

Π are zero, the last four integrals of (5.3b) can be dropped,
giving

−
∫
D(2)

(∇2f
(2)
2r − gr)δf(2)

2r dV +

∫
∂D

(2)
Π

(
∂f

(2)
2r

∂n(2)
− br

)
δf

(2)
2r dS = 0. (7.2)

By introducing in the above equation the representations (6.4) and (6.8) for f(2)
2r ,

r = 2, 0, respectively, and their consequence concerning the expressions for δf(2)
2r , and

by using (5.4), we obtain the variational equation:

∞∑
m=−1

∫ x=b

x=a

δfm,r(x)

[ ∞∑
n=−1

amn,r(x)
d2fn,r(x)

dx2
+ bmn,r(x)

dfn,r(x)

dx

+ cmn,r(x)fn,r(x)− gm,r(x)

]
dx = 0, (7.3)

where

gm,r(x) =


−
∫ z=0

z=−h2

∆S (2)
22 (x, z)z(2)

m (z) dz − dh2

dx

∂S
(2)
22 (x,−h2)

∂x
z(2)
m (−h2), r = 2

−
∫ z=0

z=−h2

∆S (2)
20 (x, z)T (2)

m (z) dz − dh2

dx

∂S
(2)
20 (x,−h2)

∂x
T (2)
m (−h2), r = 0.

(7.4)
The x-dependent coefficients amn,r(x), bmn,r(x) and cmn,r(x), r = 2, 0, are given by

amn,r(x) =

∫ z=0

z=−h2(x)

Zm,r(z; x)Zn,r(z; x) dz, (7.5a)

bmn,r(x)=2

∫ z=0

z=−h2(x)

Zm,r(z; x)
∂Zn,r(z; x)

∂x
dz+

dh2(x)

dx
Zm,r(−h2(x); x)Zn,r(−h2(x); x), (7.5b)
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cmn,r(x) =

∫ z=0

z=−h2(x)

Zm,r
∂2Zn,r(z; x)

∂x2
dz

+
dh2(x)

dx
Zm,r(−h2(x); x)

∂Zn,r(−h2(x); x)

∂x
+ δ− lnZm,r(−h2(x); x), (7.5c)

where δmn is Kronecker’s delta, and

Zn,r(z; x) =

{
z(2)
n (z; x), r = 2,

T (2)
n (z; x), r = 0,

n = −1, 0, 1, 2 . . . . (7.5d)

Since δfm,r(x), m = −1, 0, 1, . . . are arbitrary, independent variations, (7.3) is equivalent
to the following systems:

∞∑
n=−1

amn,r(x)
d2fn,r(x)

dx2
+ bmn,r(x)

dfn,r(x)

dx
+ cmn,r(x)fn,r(x) = gm,r(x),

a < x < b, m = −1, 0, 1, . . . , (7.6)

r = 2, 0, which will be called the second-order coupled-mode systems of horizontal
equations. The structure of these systems is very similar to the structure of the
corresponding system for the linearized potential, (6.3). The coefficients amn,r(x), bmn,r(x)
and cmn,r(x) are all known since they are expressed in terms of the (known) second-
order local bases Zn,r(z; x), r = 2, 0. The forcing terms gm,r(x) of the above system are
completely defined by (7.4) in terms of the known functions S2r(x, z), which implicitly
express the effects of the linearized solution.

7.2. Boundary conditions for the modal amplitude functions

Since the system (7.5) is equivalent to (7.2), retaining the former renders the latter an
identity. Thus, the variational equation (5.3b) can be now simplified to∫

∂D
(12)
I

(
∂f

(1)
2r

∂n(1)
+
∂f

(2)
2r

∂n(2)
− G̃(12)

r

)
δf

(2)
2r dS +

∫
∂D

(23)
I

(
∂f

(2)
2r

∂n(2)
+
∂f

(3)
2r

∂n(3)
− G̃(23)

r

)
δf

(2)
2r dS

+

∫
∂D

(12)
I

(f(2)
2r − f(1)

2r − G(12)
r )δ

(
∂f

(1)
2r

∂n(1)

)
dS

+

∫
∂D

(23)
I

(f(2)
2r − f(3)

2r − G(23)
r )δ

(
∂f

(3)
2r

∂n(3)

)
dS = 0, r = 2, 0. (7.7)

Similarly to the linearized potential (see AB, § 5), we derive from (7.7) sets of decoupled
boundary conditions for each of the modes of the second-order potentials fn,r , n =
0, 1, 2, . . . , r = 2, 0, at the ends x = a and x = b of the variable bathymetry region
D(2). The final results are summarized in the following theorem:

Theorem D. The coupled-mode systems: The variational equation (5.3) and, thus,
the transmission problems PT ,2r , r = 2, 0, are equivalent to the inhomogeneous system
of second-order differential equations (7.6), supplemented by the following boundary
conditions:

f−1,r(a) =
df−1,r(a)

dx
= 0, f−1,r(b) =

df−1,r(b)

dx
= 0, (7.8a)
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δ2r

df0,r(a)

dx
+ χ0,r(a)f0,r(a) = G0,r(a),

df0,r(b)

dx
− χ0,r(b)

(
δ2rf0,r(b) + δ0,r

df0,r(a)

dx

)
= G0,r(b),

 (7.8b)

dfn,r(a)

dx
− χn,r(a)fn,r(a) = Gn,r(a),

dfn,r(b)

dx
+ χn,r(b)fn,r(b) = Gn,r(b), n = 1, 2, . . . .

(7.8c)

The coefficients χn,r , and the forcing terms Gn,r , n = 0, 1, 2, . . . , r = 2, 0, appearing in the
boundary conditions (7.8), are given in Appendix B. Note that conditions (7.8a), con-
cerning the sloping-bottom modes f−1,r(x), are not derived from the variational equa-
tion (7.7). These conditions are derived using (6.7) and (6.13) and the bottom boundary
conditions of the second-order problems, requiring ∂ϕ(2)

2r (x = a, x = −h1)/∂z = 0 and

∂ϕ
(2)
2r (x = b, x = −h3)/∂z = 0, in conjunction with the smoothness assumptions

concerning the depth function h(x).
The coefficients ΛR , Λ(1)

n , ΛT , Λ(3)
n and Γ (1)

n , Γ (3)
n , n = 0, 1, 2, . . . , of the representation

of the second-order wave potentials in the two half-strips are then obtained by means
of the matching conditions (5.1d, e) and (5.1f, g) and are listed in Appendix C.

In contrast to the coupled-mode system for the linearized problem, (6.3), where the
forcing of the system, due solely to the incident wave, appears only in the boundary
condition for the propagating mode at x = a (see AB, § 5), the forcing of the second-
order coupled mode systems comes both from the right-hand side of the differential
equations (the terms gm,r(x), defined by (7.4)), and from the right-hand side of the
boundary conditions (the terms Gn,r(a) and Gn,r(b) in (7.8)).

In concluding this section, it is worth pointing out that, under the smoothness
assumptions for the depth function h(x), the coefficients amn,r(x), bmn,r(x) and cmn,r(x),
r = 2, 0, of the second-order coupled-mode systems are continuous functions of x and
can be calculated a priori in terms of the known local vertical bases. Furthermore,
discontinuities of the depth function h(x), or of its derivative, can also be treated
by introducing appropriate domain decomposition with matching boundaries at the
points of discontinuities, see e.g. Massel (1983) for the treatment of the 2ω problem
in the case of an infinite underwater step. Finally, it should be remarked here that
the present theory can be extended to treat the case of obliquely incident waves over
variable bathymetry.

8. Numerical results and discussion
The coupled-mode systems (7.6), (7.8) for the two second-order problems (r = 2, 0)

have been solved by means of a second-order finite-difference discretization scheme.
The method of solution is similar with the one presented in AB, § 6, in conjunction
with the linearized problem.

In this section, numerical results are first presented for the case of a smooth,
but steep, underwater shoal, selected as an example in order to illustrate various
aspects of the second-order coupled-mode theory in variable bathymetry regions.
Then, the present method is validated against (i) experimental data for the case of
a bar with rounded corners (Rey et al. 1992), (ii) other second-order models and
experimental data for the case of a submerged trapezoidal bar (Ohyama et al. 1995b),
and (iii) nonlinear numerical solutions (Ohyama & Nadaoka 1994), for the case of
an underwater step.
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8.1. Discrete approximation of the coupled-mode system of equations

First the series (6.4) and (6.8) are truncated to a finite number of terms (modes),
retaining Ne evanescent modes along with the propagating (n = 0), the sloping bottom
(n = −1) and the free-surface (n = −2) modes. The last have been defined by (6.6)
and (6.10), for r = 2 and r = 0, respectively, in terms of the linearized potential.

The discrete scheme is constructed by using central, second-order, finite differences
for approximating the first and second derivatives of the coupled-mode systems (7.6),
in [a, b]. Second-order discrete boundary conditions are obtained by combining (7.8)
and (7.6) at the ends x = a, x = b, and then using central differences to approximate
derivatives.

It is well known that the spatial degree of approximation of the discrete system,
specified by the number N of segments subdividing the interval [a, b], is strongly
dependent on the local variation of the wave potentials, which, in the case of the 2ω
problem, is controlled by the local wavelength. A standard rule is to use at least 10
grid points per (local) wavelength. Taking into account that the second-order wave
potential varies twice as rapidly as the first-order one, the previous requirement may
lead to a significant increase of the dimension of the discrete system, if the number
of modes Nm = Ne + 2, required for the convergence of the numerical solution is
not small. This situation becomes more problematic as the frequency and/or the
bottom variation length (b− a) increase. Thus, it is important to keep the number of
modes Nm required for the numerical convergence of the solution as small as possible,
without sacrificing the quality of the results.

The number Nm is essentially dependent on the local bottom slope and curvature.
A good deal of experience concerning the numerical behaviour of the modal series
has been acquired in connection with the linearized problem; see AB, § 6, and its
extension to three dimensions (Athanassoulis et al. 2000). In the case of a slowly
varying bathymetry, representation (6.1), associated with the linearized potential, can
be drastically simplified by dropping all evanescent modes ϕn, n = 1, 2, 3, . . . , and the
sloping-bottom mode ϕ−1, leading to the modified mild-slope model (Massel 1993;
Chamberlain & Porter 1995). As the bottom surface becomes locally more steep,
the inclusion of evanescent modes in the representation is inevitable. However, the
inclusion of the sloping-bottom mode greatly alleviates this situation, by increasing
the rate of decay of the modal-amplitude functions ϕn from O(n−2), when ϕ−1 is not
included, to O(n−4), when ϕ−1 is taken into account. In what follows, by means of
a simple numerical example, we shall demonstrate that the fast decay property still
holds for the representations (6.4) and (6.8) of the second-order potentials in the
variable bathymetry region. This renders the present model a valuable tool for the
study of weakly nonlinear waves over uneven bottom profiles with steep slopes.

8.2. Illustration of various features of the second-order coupled-mode theory through a
numerical case study

As a first example, let us consider the following (monotocically varying) depth
function:

h(x) =


h1 = 6 m, x < a = 10 m,

h2(x) =
h1 + h3

2
− h1 − h3

2
tanh

(
3π

(
x− a
b− a −

1

2

))
, a < x < b,

h3 = 2 m, x > b = 30 m,
(8.1)
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Figure 4. (a) Real and (b) imaginary first-order wave field ϕ1(x, z) in the case of the smooth but
steep shoal, defined by (8.1). Incident wave conditions: H = 0.2 m, ω = 1.3 rad s−1. The maximum
bottom slope is smax = 94%, approximately in the middle of the variable bathymetry region D(2),
indicated by vertical dashed lines.

which represents a smooth, but locally very steep, underwater shoal, joining a water
region of 6 m depth with a shallow water region of 2 m depth. This bathymetry has
also been studied in AB in connection with the application of the coupled-mode
technique to the linearized problem.

The maximum bottom slope of the underwater shoal (8.1) is smax = 0.94 and the
mean bottom slope smean = 0.2. A sketch of the bottom geometry is shown in figure 4.
Numerical results for this bottom geometry, and for an incident wave of angular
frequency ω = 1.3 rad s−1, and wave height H = 0.2 m, are presented and discussed in
figures 4 to 10 for this geometry. The incident wave has been assumed to be purely
monochromatic, i.e. Λ0 = 0.

In the case examined both shallowness ratios h1/λ1 = 0.19 and h3/λ3 = 0.1 fall well
outside the limits of the deep or the shallow water theory. The Ursell parameter
U = (H/h)(λ/h)2 varies from U1 = 0.87 to U3 = 11.1, on moving from the region of
incidence to the region of transmission. Thus, the pair (U,H/λ) falls well within the
regime of Stokes theory, bounded by U < 8π2 and H/λ < 0.14 tanh(2πh/λ); see e.g.
Massel (1989). The modulus of the reflection coefficient has been calculated to be
|AR| = 0.116 and the modulus of the transmission coefficient |AT | = 1.096, which
are very close to the corresponding values for the abrupt underwater step shown in
figure 2.

In figure 4 the equipotential lines of the linearized wave potential ϕ(x, z) (real
and imaginary parts) in the variable bathymetry subdomain D(2) have been plotted.
Numerical results shown have been obtained by subdividing the range b − a =
20 m into N = 100 segments, and by retaining 6 evanescent modes (Ne = 6) in the
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Figure 5. (a) Forcing F20(x) of the steady second-order problem, for the same environment and wave
conditions as in figure 4. (b) Solution of the steady second-order problem ϕ20(x, z), as calculated by
the present method.

representation, which was found to be enough for the convergence of the numerical
solution. In this figure, the fulfilment of the bottom boundary condition is clearly
seen, which is equivalent to the normal intersection of the equipotential lines and the
bottom profile. We can observe the fine matching, at x = a and at x = b, between the
representations of the wave potential in the three subdomains.

Based on the calculated linearized wave potential, the forcing of the free-surface
boundary condition of the steady second-order problem F20(x) is plotted in figure 5(a).
Clearly, F20(x) exhibits a very fast (exponential) decay moving away from the variable
bathymetry region, as already discussed at the end of § 4.2. Thus, the forcing of the
steady second-order problem is essentially concentrated over the variable bathymetry
region, inside the interval [a, b], and is maximized along with the bottom slope.

The steady second-order wave field ϕ20(x, z) (induced current) is shown in fig-
ure 5(b), by equipotential lines. Again, the equipotential lines intersect the bottom
profile perpendicularly, as they should. In the case examined, the steady field generates
a slow current in the same direction as the wave, and with velocities ranging from
u−∞20 = 6.9 mm s−1, in the deep-water region, to u+∞

20 = 17.6 mm s−1, in the shallow-
water region. Thus, the mass imbalance coefficient generated by the steady current
is

δMC
av =

MC
av(+∞)−MC

av(−∞)

ρωH2
=
ρ(u+∞

20 h3 − u−∞20 h1)

ρωH2
= −0.125. (8.2a)

On the other hand, by using (3.8b) and the calculated values of the reflection and
transmission coefficients of the linearized problem, the wave-generated mass flux
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Figure 6. Real (solid line) and imaginary (dashed line) parts of the forcing F22(x) of the
second-order wave potential, for the same environment and wave conditions as in figure 4.

imbalance is

δMW
av =

MW
av (+∞)−MW

av (−∞)

ρωH2
=

g

8ω2
(k(3)

0 |AT |2 − k(1)
0 (1− |AR|2)) = 0.125, (8.2b)

which exactly balances the current-generated flux. Note that the calculated value of
δMW

av = 0.125, for ω = 1.3 rad s−1, is very close to the corresponding value obtained
in the case of the underwater step with the same depths at infinity, plotted in figure 2.

In figure 6 the real and imaginary parts of the forcing F22(x) of the second-order
wave problem are plotted, as calculated by means of the linearized wave potential,
(2.9). Unlike the forcing F20(x) of the steady problem, which decays exponentially
away from the variable bathymetry region, F22(x) extents all along the real axis from
−∞ to ∞. It is clearly seen in figure 6 that F22(x) increases substantially as we move
from the region of incidence (deeper water) to the region of transmission (shallower
water). This observation is indicative of the second-harmonic generation which is
expected to occur as the shallow end of the variable bathymetry is approached. The
unsteady second-order wave field ϕ22(x, z), as calculated by the present method, is
plotted in figure 7, by equipotential lines. The fulfilment of the bottom boundary
condition and the smooth matching of the second-order representations in the three
subdomains, at x = a and at x = b, are again evident. The free-surface elevation
associated with the first and the second harmonics is presented in figure 8. The
linearized free-surface elevation εη1(x) = 1

2
Hϕ1(x) (see (2.7)) is the dominant part.

The second-harmonic generation, represented by the wave elevation ε2η22(x), becomes
appreciable as the shallow end of the smooth shoal is approached. In this area the
amplitude of the second harmonic reaches about 20% of the amplitude of the first
harmonic. Under the wave conditions examined, the contribution of ε2η20(x) (i.e. the
mean sea level set-down) is negligible.

In figure 9 the moduli of the modal-amplitude functions, i.e. the quantities |ϕn(x)|,
and |fn,r(x)|, r = 2, 0, in a 6 x 6 b, are plotted, as obtained by the present method.
The horizontal axis in figure 9 is a multiple replica of the interval [a, b], i.e. a sequence
of repeated intervals [a, b], each associated with a mode and named after the mode
number. In the nth replica of [a, b] the amplitudes |ϕn(x)| and |fn,r(x)|, r = 2, 0, of the
nth mode are plotted using solid, dashed and dash-dotted lines, respectively. Also,
the curve 0.1n−4 is drawn, bounding the maxima of the amplitudes of all modal
functions, both of the linearized and of the second-order potentials. On the basis
of these (and many other similar) results, we can conjecture that the decay of the
modal amplitudes is O(n−4), which is sufficient to ensure the uniform convergence
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Figure 9. Moduli of the modal-amplitude functions of first- and second-order potentials vs.
x ∈ [a, b] in the variable bathymetry region, for various modes n = −1, 0, 1, 2, . . .: (i) amplitudes
of the linearized problem |ϕn(x)| (solid line), (ii) amplitudes of the steady second-order problem
|fn,0(x)| (dashed line), (iii) amplitudes of the unsteady second-order problem |fn,2(x)| (dash-dotted
line). Environment and wave conditions as in figure 4. The curve 0.1n−4, shown by a thick solid
line, bounds the maxima of the modal amplitudes of all potentials.

(up to and including the boundaries) of the corresponding local-mode series and
their derivatives. Note that the exact fulfilment of the bottom boundary condition,
illustrated for the linearized and the second-order potentials in figures 4, 5(b) and 7,
respectively, is due to the above fast rate of decay of the modal amplitude functions.

In figure 9 discontinuities seem to appear, particularly in the distribution of the n =
−1 (sloping-bottom) mode, evident for the linearized and the second-order potentials
and more sharp at the point corresponding to the horizontal position x = 30 m
(shallower end of variable bathymetry region). These discontinuities, magnified by
the logarithmic vertical scale used in the plot, are not important. They are due to
the very small disturbances of the smoothness of the depth function, as defined by
(8.1) for the bathymetry considered. In fact, due to the asymptotic behaviour of tanh
for large arguments, at x = a = 10 m the depth is h(x = 10 m) = 5.997 m, instead
of h1 = 6 m, and at x = b = 30 m, h(x = 30 m) = 2.003 m, instead of h3 = 2 m. If we
move the matching boundaries further to the left and to the right, these discontinuities
completely disappear, leaving the significant part of the distributions of the modal
amplitude functions intact.

In figure 10(a) the variation of the first-order reflection and transmission coefficients
|AR|, |AT |, and the associated second-order net mass flux M, are presented in the whole
frequency range, from globally shallow-water wave conditions (ω = 0.5 rad s−1) to
globally deep-water conditions (ω = 4 rad s−1). These coefficients are almost the same
as the ones corresponding to the abrupt underwater step with the same depths at
infinity (shown in figure 2). Thus, the wave-generated mass imbalance δMW

av , (3.8b),
is very close to the one plotted in figure 2, and it is not given here. Instead, in
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figure 10(a), the net (from the combination of wave and current) mass flux coefficient
is presented, defined by

M =
MW

av +MC
av

ρωH2
, (8.3)

which, as anticipated by Theorem A, is constant (x-independent), for a given fre-
quency. We can see from this figure that, the net mass flux can be positive or negative,
depending on the frequency of the incident wave, and attains higher values at low
frequencies. In the high-frequency limit the net mass flux tends to a definite value
(M → 1/8), since the linearized wave passes the step without reflection (|AR| → 0,
|AT | → 1), and, thus, wave mass flux imbalance is not generated (δMW

av → 0). Indeed,
in this case, the forcing of the steady second-order problem and the corresponding
current flux tend to zero (F20 → 0,MC

av → 0), and thus (cf. (2.2c))

M = MW
av /ρωH

2 = 1
8

tanh(kh)→ 1
8
. (8.4)

This value agrees quite well with our numerical predictions at ω = 4 rad s−1 (globally
deep-water conditions).

The second-order transmission coefficients |λT | and |ΛT |, associated with the Stokes
bound wave and free wave, respectively, are presented in figure 10(b) versus frequency.
(The corresponding reflection coefficients |λR| and |ΛR| are negligible and are not
plotted.) The coefficients |λT |, |ΛT |, which represent the effect of second-harmonic
generation in the shallow water region, are monotonically decreasing with frequency.
For shallow-water conditions (ω → 0.5 rad s−1, for this environment), the bound and
free second harmonics in D(3) become comparable in magnitude with the first harmonic
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Figure 11. Comparison of the present theory (lines) with experimental results (symbols) (Rey et
al. 1992), in the case of a rounded-corner bar of shoaling ratio 0.375. Incident wave frequency
ω2h1/g = 0.78. Incident wave height H/h1 = 0.02 (dash-dotted line vs. circles), 0.045 (dashed line
vs. triangles), 0.07 (solid line vs. crosses). The position of the bar is shown by vertical dashed lines.

(about 25% of the latter). The same effect has been also reported by Massel (1983,
figures 5, 6) in the case of an abrupt underwater step.

8.3. Validation against experimental data and comparison with
nonlinear numerical solutions

Experimental results focusing on the second-order features of waver waves propagat-
ing over generally shaped, non-mildly sloped, smooth bottom profiles at intermediate-
water-depth conditions are not available, at least to the authors’ knowledge (although
the situation does not seem to be unnatural or exceptional in practice). On the other
hand, various experimental studies have been published concerning submerged bars
or underwater steps. Among them, the extensive experimental results of Rey et al.
(1992), concerning the propagation of waves over a single submerged impermeable
bar (with sharp and also) with rounded corners, contains a great deal of information
about second-harmonic generation and, thus, can be used for validation of the present
theory (although appropriate experimental results for a smoother profile would be
even better and are strongly desirable).

A comparison of results obtained by the present theory with experimental results
from Rey et al. (1992, figure 14), is presented in figure 11. The experimental set-
up considered refers to the case of a rounded-corner bar having a shoaling ratio
hmin/h1 = 0.375 and a non-dimensional bar length L/h1 = 1.125, at an intermediate
(non-dimensional) frequency ω2h1/g = 0.78. For this configuration, the first and the
second harmonics (called in Rey et al. fundamental and first harmonics, respectively)
of the wave amplitude were measured in the vicinity of the bar, for three values of
incident wave height H/h1 = 0.02, 0.045, 0.07. This example was selected for validation
purposes, since all the above-stated conditions of the experiment are within the regime
of weakly nonlinear water waves in intermediate water depth.

In order to treat the geometry of the vertical walls of the rounded-corner bar
by the present theory, the bar has been smoothly approximated by using the tanh
form (8.1), with parameters leading to large maximum bottom slope (smax � 1) at the
position of the vertical walls. The results of the present theory, for the three values of
the incident wave height H/h1 = 0.02, 0.045, 0.07, are shown in figure 11 by dotted,
dashed and solid lines, respectively. Experimental results for the three different wave
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Figure 12. Comparison of the present theory (solid lines) vs. second-order numerical solution
(Kioka & Ishida 1993, shown by the thick dashed line) and experimental results (Ohyama et al.
1995b, shown by circles and triangles), in the case of a trapezoidal submerged bar with shoaling
ratio 0.3. Wave conditions: ω2h1/g = 1.11, H/h1 = 0.1. The position of the bar is shown in the
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heights are indicated in figure 11 by circles, triangles and crosses, respectively. The
location of the bar is depicted by thick, vertical dashed lines. For both the first and
the second harmonics, our numerical predictions agree quite well with experimental
data, resolving both the phenomenon of second-harmonic generation (beginning at
the face of the bar and continuing up to a distance equal to the bar length after its
rear end), and the nonlinearity (increase of the normalized amplitude of the second
harmonic with the incident wave amplitude).

As another example, in figure 12 we present a comparison with other second-order
model results (Kioka & Ishida 1993, referred to herein as KI) and experimental results
from Ohyama et al. (1995b, Case 2). The experimental set-up considered refers to the
case of a trapezoidal submerged bar having a shoaling ratio hmin/h1 = 0.3. The bottom
slope at the sides of the trapezoidal bar is 50%. The case selected for comparison is
characterized by a non-dimensional frequency ω2h1/g = 1.11, and an incident wave
height H/h1 = 0.1, leading to a generation of small third and higher harmonics (less
than 30% of the basic harmonic). The results of the present theory concerning the
first and the second harmonics are shown in figure 12 by solid lines. Results of the
KI model are shown by a thick dashed line. (Only the second harmonic is plotted,
since the first harmonic practically coincides with our results.) Experimental results
are shown by circles (first harmonic) and triangles (second harmonic), respectively.

In this case, the KI model, which is based on an boundary integral equation for-
mulation of the second-order problem, has been criticized as markedly overestimating
the second harmonic, in comparison with the fully nonlinear and the Boussinesq
models, in the trailing edge of the shelf, Ohyama et al. (1995b, figure 7). However, as
is evident from figure 12, the present second-order model improves this situation.

As a final example, serving both for validation and clarification of the limitations
of our approach, we present and discuss a comparison with results of Ohyama
& Nadaoka (1994, referred to herein as ON), obtained by means of numerical
solution of the fully nonlinear water wave equations, for an infinite underwater step.
The case selected for comparison (figure 4 of ON) is characterized by a shoaling
ratio h3/h1 = 0.4, and a non-dimensional frequency ω2h1/g = 0.8. As before, wave
conditions and water depths are within the regime of weakly nonlinear wave theory
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Figure 13. Comparison of the present theory (solid lines) with fully nonlinear numerical solution
(Ohyama & Nadaoka 1994, shown by dots), in the case of a stepped bottom with shoaling ratio
h3/h1 = 0.4. Wave conditions: ω2h1/g = 0.8, H/h1 = 0.1. The position of the step is shown by a
thick vertical dashed line. The result of the bichromatic interaction between the transmitted first
and second harmonics, as calculated by the present method, in the transmission region (shallower
water depth) is also plotted using a thick line.

in intermediate water depth. Again, to treat the vertical wall of the underwater step, a
smooth but steep bottom profile has been used, by appropriately tuning the tanh form
(8.1). The first and second harmonics of free-surface elevation, calculated by means
of the present method, are plotted in figure 13 by solid lines. The corresponding
numerical nonlinear results for the stepped bottom are shown by a thick-dotted line
(as digitized from figure 4 of ON). The position of the step is indicated by a thick
vertical dashed line. As we can see in figure 13, the present method resolves well the
effects of weak nonlinearity. The second harmonic exhibits a modulation length equal
to 2π/(κ(3)

0 − 2k(3)
0 ) = 10.47 m, which is due to the interaction of the second-order

bound and free waves in the transmission region, and agrees well with the nonlinear
numerical solution.

In this case of moderate shoaling ratio (h3/h1 = 0.4), our second-order model
slightly overestimates the amplitude of the second harmonic in the transmission
region, in comparison with the fully nonlinear numerical solution of ON. However,
the variation of the amplitude of the first harmonic, which is observed in the numerical
nonlinear solution (and also in similar experiments by Bendykowska & Massel 1984)
is not directly reproduced by our results. This variation has been recognized by Massel
(1983, 1989) and Goda (1997) as a result of non-resonant interaction between the first
harmonic (k(3)

0 , ω) and the free second harmonic (κ(3)
0 , 2ω), in the transmission region.

Applying this interpretation, we also are able to predict this phenomenon quite well,
by considering the bichromatic interaction between (k(3)

0 , ω) and (κ(3)
0 , 2ω) in constant

depth (i.e. in D(3)). This interaction generates an additional first harmonic which,
when combined with a linearized transmitted wave, produces the spatial variation of
the amplitude of the first harmonic, plotted in figure 13 by a thick line. This result,
agrees well with the nonlinear numerical solution (ON, figure 4).

As the shoaling ratio h3/h1 further decreases, the nonlinearity generated in the
shallower water region becomes continuously stronger. From numerical experimenta-
tion by ON, (figure 5), in the case of the abrupt step, we know, for example, that for
h3/h1 = 0.3, the second harmonic generated becomes of the order of the first one, and
a large amount of energy is transferred to the third harmonic, which can no longer
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be neglected. In this case, the present model, being unable to treat the energy transfer
to higher harmonics, results in a significant overestimation of the second-harmonic
amplitude generated, in comparison with the nonlinear numerical solution of ON.
Although the present weakly nonlinear model does not break down for this shoaling
ratio (and even smaller values of h3/h1), the above situation provides us with an
indication of the limits of its reliability.

9. Conclusions and implications for simulation of wave–wave interactions
In the present work the second-order Stokes theory has been extended to the case of

a generally shaped bottom profile connecting two half-strips of constant (but possibly
different) depths. Thus, a method for generalizing the Stokes hierarchy of second-
and higher-order wave theories is initiated, without the assumption of spatial period-
icity. The first- and second-order problems have been equivalently reformulated as
coupled-mode systems of differential equations in the propagation space (horizontal
plane). Apart from the Stokes small-amplitude expansibility assumption, no additional
asymptotic assumptions have been introduced, e.g. bottom slope and curvature may
be arbitrary, provided that the resulting wave dynamics is Stokes-compatible. Accord-
ingly, the present theory, being valid within the Stokes regime, permits the study of
various wave phenomena (propagation, reflection, diffraction) arising from the inter-
action of weakly nonlinear waves with a general bottom topography, in intermediate
water depth. An interesting phenomenon, that is also very naturally resolved by the
present theory, is the net mass flux induced by the limiting depth variation |h3 − h1|,
which is consistently calculated by means of the steady second-order potential.

An important technical feature of the present approach is the introduction of two
additional modes: one treating the second-order free-surface forcing, and a second
one describing the influence of the bottom topography (in general, not mildly sloped
and/or strongly oscillating). It turns out that the presence of the slopping-bottom
mode in the series representations of the first- and second-order potentials ensures,
apart from consistency (see AB, § 4), a substantial acceleration of convergence of the
modal series, making possible to restrict ourselves to a few (5–7) modes.

The present method has been validated against experimental results and fully non-
linear numerical solutions. It has been found that it correctly predicts the second-order
harmonic generation, the amplitude nonlinearity, and the amplitude variation due to
non-resonant first-second harmonic interaction. Also, the limitations of applicability
of the present model, in connection with the effects of higher harmonic generation due
to increased shoaling, have been indicated. Other features worth noticing, including
possible extensions of the present theory, are the following: (i) it effectively treats the
non-local character of weakly nonlinear waves; (ii) it is naturally simplified either to
second-order Stokes waves, in the case of a flat bottom, or to the modified mild-slope
equation, in the case of small-amplitude waves past a slowly varying bathymetry; (iii)
it can be extended to treat obliquely incident waves, and study second-order refraction
patterns; (iv) it can be used to formulate and study the second-order scattering matrix
and nonlinear Bragg scattering over undulating topography.

Finally, the present theory can be extended to treat bichromatic and/or bidirectional
wave–wave interactions in variable bathymetry regions, enabling the study of the
statistical properties of second-order random seas in such regions, without imposing
any mild-slope assumptions. However, special care should be taken in the calculation
of the difference frequency potential, especially when the frequencies of the two
interacting wave components come close to each other, or when the two wave



Extension of Stokes theory to variable bathymetry 75

components are well separated in scale. In the first case, second-order bound (or
locked) waves of high amplitude may appear as the particular solution at the second
order, presenting deep penetration, Kim & Yue (1990). This could result in the
excitation of second-order evanescent modes with large amplitudes and very slow rate
of convergence of the corresponding second-order local-mode series. On the other
hand, the interaction of a short wave riding on a long wave may not be described well
by the conventional Stokes approach, due to possible modulation of the characteristics
of the short waves by the presence of the long ones, Zhang, Hong & Yue (1993).

This work was partially supported by the Greek Secretariat for Research and
Technology, in the framework of Joint Research and Technology Programme (2001–
2002) between Greece and Poland. The authors are indebted to the referees for their
constructive comments, and to Professor S. R. Massel, Institute of Oceanology, Polish
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Appendix A. Coefficients of the representations of the
non-homogeneous second-order potentials in the two half-strips

The coefficients of the representation (4.6) of the second-order Stokes waves p(1)
22 (x, z)

and e(1)
22 (x, z), bound to the linearized potential ϕ(1)

1 (x, z) in the left half-strip D(1), are
given by
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, (A 1a)
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m + k
(1)
n )h1) + µ2 cos((k(1)

m + k
(1)
n )h1)

,

m, n = 1, 2, 3, . . . . (A 1f)

The coefficients of the representation (4.9) of the second-order Stokes waves p(3)
22 (x, z)

and e(3)
22 (x, z), bound to the linearized potential ϕ(3)

1 (x, z) in the right half-strip D(3) are
given by

λT =
3iω

2

(µ2 − (k(3)
0 )2)A2

T

2k(3)
0 g sinh(2k(3)

0 h3)− 4ω2 cosh(2k(3)
0 h3)

, (A 2a)
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λTn = − iω

g

(3µ2 − 2ik(3)
0 k

(3)
n + 1

2
((k(3)

n )2 − (k(3)
0 )2))ATC

(3)
n exp(k(3)

n b)

(k(3)
n − ik(3)

0 ) sin((k(3)
n − ik(3)

0 )h3) + µ2 cos((k(3)
n − ik(3)

0 )h3)
,

n = 1, 2, 3, . . . , (A 2b)

λ(3)
mn = − iω

g

( 3
2
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2
(k(3)
n )2 + k(3)

m k
(3)
n )C (3)

m C
(3)
n exp((k(3)
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n )b)

(k(3)
m + k

(3)
n ) sin((k(3)

m + k
(3)
n )h3) + µ2 cos((k(3)

m + k
(3)
n )h3)

,

m, n = 1, 2, 3, . . . . (A 2c)

The coefficients of the representation (4.12) of the known component e(1)
20 (x, z) of the

steady second-order wave potential ϕ(1)
20 (x, z) in the left half-strip D(1), are given by

γ̃Rn = − iω

2g

((k(1)
n )2ĀRC

(1)
n − (k(1)

0 )2A0C̄
(1)
n ) exp(−k(1)

n a)

(k(1)
n + ik(1)

0 ) sin((k(1)
n + ik(1)

0 )h1)
, n = 1, 2, 3, . . . , (A 3a)

γRn =
iω

2g
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0 )2(ARC̄

(1)
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n )2Ā0C
(1)
n ) exp(−k(1)
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, n = 1, 2, 3, . . . , (A 3b)
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(1)
n ) sin((k(1)

m + k
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n )h1)

, m, n = 1, 2, 3, . . . . (A 3c)

Finally, the coefficients of the representation (4.15) of the known component e(3)
20 (x, z)

of the steady second-order wave potential ϕ(3)
20 (x, z) in the right half-strip D(3), are

given by

γ̃Tn = − iω

2g

(k(3)
0 )2ĀTC
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n exp(k(3)

n b)
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Appendix B. Coefficients and forcing terms of the boundary conditions of
the second-order coupled-mode systems

The coefficients χn,r , Gn,r , n = 0, 1, 2, . . . , r = 2, 0, appearing in the boundary condi-
tions (7.8), are defined as follows:

χ0,r(a) =

{
iκ(1)

0 , r = 2

1, r = 0
, χ0,r(b) =

{
iκ(3)

0 , r = 2

ξ, r = 0
, (B 1)

χn,r(a) =

{
κ(1)
n , r = 2

nπ/h1, r = 0
, χn,r(b) =

{
κ(3)
n , r = 2

nπ/h3, r = 0
, n = 1, 2, 3, . . . . (B 2)

The forcing terms Gn,2, n = 0, 1, 2, . . . , appearing on the right-hand side of the
boundary conditions (7.8) for the second-order wave problem (r = 2), are defined as
follows:

G0,2(a) = 2iκ(1)
0 Λ

(1)
0 exp(iκ(1)

0 a)

+
1

‖z(1)
0 ‖2

∫ z=0

z=−h1

(−G̃(12)
2 (z) + χ0,2(a)G

(12)
2 (z))z(1)

0 (z) dz, n = 0, (B 3)
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Gn,2(a) =
1

‖z(1)
n ‖2

∫ z=0

z=−h1

(−G̃(12)
2 (z)− χn,2(a)G(12)

2 (z))z(1)
n (z) dz, n = 1, 2, . . . , (B 4)

G0,2(b) =
1

‖z(3)
0 ‖2

∫ z=0

z=−h3

(G̃(23)
2 (z)− χ0,2(b)G

(23)
2 (z))z(3)

0 (z) dz, n = 0, (B 5)

Gn,2(b) =
1

‖z(3)
n ‖2

∫ z=0

z=−h3

(G̃(23)
2 (z) + χn,2(b)G

(23)
2 (z))z(3)

n (z) dz, n = 1, 2, . . . , (B 6)

where ‖ · ‖ denotes the usual L2-norm. Note that the forcing term in the boundary
condition of the propagating second-order mode G0,2(a), defined by equation (B 3),
also carries the effects of the second-order free harmonic (with complex amplitude
Λ

(1)
0 ), which is including in the generalized monochromatic incident wave system.

The forcing terms Gn,r , n = 0, 1, 2, . . . , appearing on the right-hand side of the
boundary conditions (7.8) for the steady second-order problem (r = 0), are defined as
follows:

G0,0(a) =
1

h1

∫ z=0

z=−h1

G
(12)
0 (z) dz, n = 0, (B 7)

Gn,0(a) =
1

‖T (1)
n ‖2

∫ z=0

z=−h1

(−G̃(12)
0 (z)− χn,2(a)G(12)

0 (z))T (1)
n (z) dz, n = 1, 2, . . . , (B 8)

G0,0(b) = ν +
1
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G̃
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0 (z) dz +

ξ

h1
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G̃
(12)
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Gn,0(b) =
1

‖T (3)
n ‖2

∫ z=0

z=−h3

(G̃(23)
2 (z) + χn,2(b)G

(23)
2 (z))T (3)

n (z) dz, n = 1, 2, . . . . (B 10)

Appendix C. Coefficients of the representations of the homogeneous
second-order potentials in the two half-strips

The coefficients ΛR , Λ(1)
n , ΛT , Λ(3)

n of the representation of the second-order wave
potential (r = 2) in the two half-strips are expressed in terms of the solution of the
corresponding second-order coupled-mode system by the relations

ΛR =

(
f0,2(a)− Λ0 exp(iκ(1)

0 a)− 1

‖z(1)
0 ‖2

∫ z=0

z=−h1

G
(12)
2 (z)z(1)

0 (z) dz

)
exp(iκ(1)

0 a),

(C 1a)

Λ(1)
n = fn,2(a)− 1
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G
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0 b), (C 1c)

Λ(3)
n = fn,2(b)− 1
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∫ z=0
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G
(23)
2 (z)z(3)
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and the coefficients Γ (1)
n , Γ (3)

n , n = 0, 1, 2, . . . , of the representation of the steady
second-order potential (r = 0) by

Γ
(1)
0 =

df0,0(a)

dx
− 1

h1

∫ z=0

z=−h1

G̃
(12)
0 (z) dz, (C 2a)

Γ (1)
n = fn,0(a)− 1

‖T (1)
n ‖2

∫ z=0

z=−h1

G
(12)
0 (z)T (1)

n (z) dz, n = 1, 2, 3, . . . , (C 2b)

Γ
(3)
0 = f0,0(b)− 1

h3

∫ z=0

z=−h3

G
(23)
0 (z) dz, (C 2c)

Γ (3)
n = fn,0(b)− 1

‖T (3)
n ‖2

∫ z=0

z=−h3

G
(23)
0 (z)T (3)

n (z) dz, n = 1, 2, 3, . . . . (C 2d)
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